1. Trang chủ
  2. » Tất cả

Đề ôn khảo sát chất lượng thptqg môn toán (714)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 125,73 KB

Nội dung

Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Khối trụ có bán kính đáy bằng chiều cao và bằ[.]

Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A 2πR3 B 4πR3 C πR3 D 6πR3 Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 20a3 B 60a3 C 30a3 D 100a3 Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = 13 B m = −15 C m = D m = −2 x π π π Câu Biết F(x) nguyên hàm hàm số f (x) = F( ) = Tìm F( ) √ cos2 x π π ln π π ln π π ln π π ln A F( ) = + B F( ) = − C F( ) = − D F( ) = + 4 4 4 Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu A πR3 B πR3 C πR3 D 4πR3 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? A x = + 2ty = + tz = − 4t B x = + 2ty = + tz = C x = + 2ty = + tz = D x = + ty = + 2tz = Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = (−∞; ln3) B S = [ 0; +∞) C S = [ -ln3; +∞) D S = (−∞; 2) Câu Hàm số sau khơng có cực trị? A y = x3 − 6x2 + 12x − C y = x4 + 3x2 + B y = cos x D y = x2 Câu Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A π B 4π C 2π D 3π √ Câu 10 Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Khơng có tiệm cận ngang có tiệm cận đứng B Có tiệm cận ngang khơng có tiệm cận đứng C Khơng có tiệm cận D Có tiệm cận ngang tiệm cận đứng Câu 11 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; −1; 2) B I(0; 1; 2) C I(0; 1; −2) D I(1; 1; 2) Câu 12 Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt Trang 1/5 Mã đề 001 S S 7 A ( ; +∞) B [22; +∞) C [ ; 2] [22; +∞) D ( ; 2] [22; +∞) 4 Câu 13 Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 4m2 − m2 − m2 − 12 m2 − 12 A B C D 2m 2m m 2m x−1 y+2 z Câu 14 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x − 2y − = B (P) : x − y − 2z = C (P) : x − y + 2z = D (P) : x + y + 2z = Câu 15 Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 +x2 y = x2 +3x+mcắt nhiều điểm A m = B −2 < m < C −2 ≤ m ≤ D < m < Câu 16 Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D Câu 17 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính qng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động A S = 24 (m) B S = 12 (m) C S = 28 (m) D S = 20 (m) x tập xác định Câu 18 Giá trị nhỏ hàm số y = x +1 1 B y = −1 C y = − D y = A y = R R R R 2 ax + b có đồ thị hình vẽ bên Kết luận sau sai? Câu 19 Cho hàm số y = cx + d A ab < B ad > C bc > D ac < Câu 20 Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 B y = x2 − 2x + C y = x3 − 2x2 + 3x + D y = −x4 + 3x2 − Rm dx Câu 21 Cho số thực dươngm Tính I = theo m? x + 3x + m+2 m+1 m+2 2m + A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) 2m + m+2 m+1 m+2 x π π π F( ) = Tìm F( ) Câu 22 Biết F(x) nguyên hàm hàm số f (x) = √ cos2 x π π ln π π ln π π ln π π ln A F( ) = − B F( ) = + C F( ) = + D F( ) = − 4 4 4 Câu 23 Kết đúng? R R sin3 x A sin x cos x = − + C B sin2 x cos x = −cos2 x sin x + C R R sin3 x C sin x cos x = + C D sin2 x cos x = cos2 x sin x + C Câu 24 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 2a, đường cao hình chóp a Tính góc hai mặt phẳng (S AC) (S AB) A 360 B 300 C 450 D 600 p Câu 25 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < y < −3 B Nếux > thìy < −15 C Nếux = y = −3 D Nếu < x < π y > − 4π2 Trang 2/5 Mã đề 001 Câu 26 Một vật chuyển động với gia tốc a(t) = −20(1 + 2t)−2 Khi t = vận tốc vật 30 (m/s) Quãng đường vật sau giây gần với giá trị sau đây? A 48m B 50m C 49m D 47m Câu 27 Tính diện tích hình phẳng giới hạn đồ thị (C) hàm số y = x2 − 4x + 5, tiếp tuyến A(1; 2) tiếp tuyến B(4; 5) đồ thị (C) A B C D 4 4 (2 ln x + 3)3 : x (2 ln x + 3)4 (2 ln x + 3)4 B + C C + C Câu 28 Họ nguyên hàm hàm số f (x) = A (2 ln x + 3)2 + C D ln x + + C Câu 29 Cho a > 1, a , Tìm mệnh đề mệnh đề sau: A loga = a loga a = B loga x có nghĩa với ∀x ∈ R C loga (xy) = loga x.loga y D loga xn = log x , (x > 0, n , 0) an Câu 30 Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2) Đường phân giác góc A tam giác ABC cắt mặt phẳng (P) : x + y + z − = điểm điểm sau đây: A (−2; 2; 6) B (4; −6; 8) C (−2; 3; 5) D (1; −2; 7) Câu 31 Cho tam giác ABC vuông A, AB = a, BC = 2a Tính thể tích khối nón nhận quay tam giác ABC quanh trục AB √ √ πa3 3 C D 3πa3 A πa B πa 3 Câu 32 Lăng trụ ABC.A′ B′C ′ có đáy tam giác cạnh a Hình chiếu vng góc A′ lên (ABC) trung điểm BC Góc cạnh bên mặt phẳng đáy 600 Khoảng cách từ C ′ đến mp (ABB′ A′ ) √ √ √ √ 3a 10 3a 13 3a 13 a A B C D 20 13 26 m 3 Câu 33 Xác định tập tất giá trị tham số m để phương trình 2x + x − 3x − = − 2 có nghiệm phân biệt 19 19 B S = (−5; − ) ∪ ( ; 6) A S = (−2; − ) ∪ ( ; 7) 4 4 19 C S = (−2; − ) ∪ ( ; 6) D S = (−3; −1) ∪ (1; 2) 4 π R2 Câu 34 Biết sin 2xdx = ea Khi giá trị a là: A B C − ln D ln Câu 35 Hàm số hàm số sau đồng biến R A y = x4 + 3x2 B y = x3 + 3x2 + 6x − 4x + C y = −x3 − x2 − 5x D y = x+2 Câu 36 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B −4 C −2 D Trang 3/5 Mã đề 001 Câu 37 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 6π B 8π C 10π D 12π π cos x F(− ) = π Khi giá trị Câu 38 Biết hàm F(x) nguyên hàm hàm f (x) = sin x + cos x F(0) bằng: 6π 6π 6π 3π A ln + B ln + C D ln + 5 5 Câu 39 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình √ nón đỉnh S đáy hình√trịn nội tiếp tứ giác ABCD √ √ 2 πa 15 πa 17 πa2 17 πa 17 B C D A Câu 40 Chọn mệnh đề mệnh đề sau: R R e2x (2x + 1)3 A e2x dx = + C B (2x + 1)2 dx = +C R R C x dx =5 x + C D sin xdx = cos x + C Câu 41 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 3mn + n + 2mn + n + A log2 2250 = B log2 2250 = n n 2mn + 2n + 2mn + n + C log2 2250 = D log2 2250 = m n Câu 42 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ√ABC.A′ B′C ′ √ √ A 4a3 B 6a3 C 9a3 D 3a3 R ax + b 2x )e + C Khi giá trị a + b là: Câu 43 Biết a, b ∈ Z cho (x + 1)e2x dx = ( A B C D Câu 44 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = − (x2 − 2x)dx + (x2 − 2x)dx B C D R3 R2 R3 1 R3 R2 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx = (x2 − 2x)dx + |x2 − 2x|dx R3 1 R3 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx (x2 − 2x)dx Câu 45 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ√ABC.A′ B′C ′ √ √ B 3a3 C 4a3 D 9a3 A 6a3 π cos x Câu 46 Biết hàm F(x) nguyên hàm hàm f (x) = F(− ) = π Khi giá trị sin x + cos x F(0) bằng: 6π 3π 6π 6π A ln + B ln + C D ln + 5 5 Câu 47 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRh + πR2 B S = 2πRl + 2πR2 C S = πRl + πR2 D S = πRl + 2πR2 Trang 4/5 Mã đề 001 Câu 48 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 B C D A 12 Câu 49 Cho hàm số y = x − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 50 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A 2x + y − 4z + = B 2x + y − 4z + = C 2x + y − 4z + = D −2x − y + 4z − = - - - - - - - - - - HẾT- - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 03/04/2023, 08:59