Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Với giá trị nào của tham số m thì tiếp tuyến[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = B m = −2 C m = −15 D m = 13 Câu Kết đúng? R sin3 x A sin x cos x = − + C R C sin2 x cos x = cos2 x sin x + C B R sin2 x cos x = −cos2 x sin x + C D R sin3 x + C sin x cos x = Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng√AB′ BC ′ √ 3a 5a 2a a A B C √ D √ 5 Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A 6πR3 B πR3 C 2πR3 D 4πR3 √ ′ lăng trụ cho là: Câu Cho lăng trụ ABC.A′ B′C ′ có đáy a, AA = 3a Thể tích khối √ √ 3 D 3a3 A 3a B a C 3a Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = −x4 + 3x2 − B y = x3 − 2x2 + 3x + C y = x D y = x2 − 2x + Câu Số nghiệm phương trình x + 5.3 x − = A B C D m R dx Câu Cho số thực dươngm Tính I = theo m? x + 3x + m+1 2m + m+2 m+2 A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) m+2 m+2 2m + m+1 Câu Cho a, b hai số thực dương Mệnh đề đúng? A ln(ab2 ) = ln a + ln b B ln(ab2 ) = ln a + (ln b)2 a ln a C ln(ab) = ln a ln b D ln( ) = b ln b Câu 10 Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D ′′ Câu 11 Cho hàm số f (x) thỏa mãn f (x) = 12x + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = −1 B f (−1) = −3 C f (−1) = D f (−1) = −5 Câu 12 Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 m2 − 12 4m2 − m2 − m2 − 12 A B C D m 2m 2m 2m Câu 13 Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Trang 1/4 Mã đề 001 Câu 14 Cho hình trụ có hai đáy hai đường tròn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu 15 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = −7 B m = C m = D m = Câu 16 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 C D − A B 6 Rm dx Câu 17 Cho số thực dươngm Tính I = theo m? x + 3x + m+1 m+2 2m + m+2 A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) m+2 m+1 m+2 2m + Câu R18 Công thức sai? R A R sin x = − cos x + C B R e x = e x + C C cos x = sin x + C D a x = a x ln a + C Câu 19 Kết đúng? R R sin3 x + C A sin2 x cos x = cos2 x sin x + C B sin2 x cos x = R R sin3 x + C D sin2 x cos x = −cos2 x sin x + C C sin2 x cos x = − Câu 20 Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = −2 B m = 13 C m = −15 D m = −u (2; −2; 1), kết luận sau đúng? Câu 21 Trong không gian với hệ tọa độ Oxyz cho → → − → − −u | = −u | = √3 A | u | = B | u | = C |→ D |→ √ ′ ′ ′ ′ Câu 22 B C có đáy a, AA = 3a Thể tích khối lăng trụ cho là: √ √ 3Cho lăng trụ ABC.A B 3a3 C 3a3 D a3 A 3a Câu 23 Cho√ hai số thực a, bthỏa mãn a√> b > Kết luận sau sai? √ √ √5 √ 2 − A a > b B a < b− C ea > eb D a < b p Câu 24 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux > thìy < −15 B Nếux = y = −3 C Nếu < x < y < −3 D Nếu < x < π y > − 4π2 Câu 25 Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 60a3 B 20a3 C 30a3 D 100a3 R4 R1 R4 Câu 26 Cho f (x)dx = 10 f (x)dx = Tính f (x)dx −1 A −1 B C 18 D −2 2x − Câu 27 Với giá trị tham số m hàm số y = đạt giá trị lớn đoạn [1; 3] x + m2 : √ A m = ± B m = ±2 C m = ±3 D m = ±1 Trang 2/4 Mã đề 001 Câu 28 Cho hàm số y = x −3x Tính y′ A y′ = (2x − 3)5 x −3x ln C y′ = (x2 − 3x)5 x −3x ln B y′ = x −3x ln D y′ = (2x − 3)5 x −3x 1 + + + ta được: loga x loga2 x logak x 4k(k + 1) k(k + 1) B M = C M = loga x loga x Câu 29 Rút gọn biểu thức M = A M = k(k + 1) 2loga x D M = k(k + 1) 3loga x Câu 30 Cho hình trụ (T ) có chiều cao bán kính 3a Một hình vng ABCD có hai cạnh AB, CD hai dây cung hai đường trịn đáy, cạnh AD, BC khơng phải đường sinh hình trụ (T ) Tính cạnh hình vng √ √ 3a 10 D 3a A 3a B 6a C Câu 31 Tính thể tích khối trịn xoay quay xung quanh trục hồnh hình phẳng giới hạn đường y = , x = 1, x = trục hoành x π 3π π 3π A V = B V = C V = D V = 2 1 Câu 32 Tìm tất giá trị tham số m để đồ thị hàm số y = x3 − (m − 2)x2 + (m − 2)x + m2 có 3 hai điểm cực trị nằm phía bên phải trục tung? A m > B m > C m > m < D m < Câu 33 Tính diện tích hình phẳng giới hạn đồ thị (C) hàm số y = x2 − 4x + 5, tiếp tuyến A(1; 2) tiếp tuyến B(4; 5) đồ thị (C) B C D A 4 4 Câu 34 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc a Tính thể tích khối √ với mặt phẳng (ABC), √diện tích tam giác S BC3 √ √ chóp S ABC 3 a 15 a a 15 a 15 A B C D 16 Câu 35 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx B C 1 R3 R2 R3 1 R3 R2 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx = (x2 − 2x)dx − D R3 |x − 2x|dx = − |x2 − 2x|dx R3 (x2 − 2x)dx R2 (x − 2x)dx + R3 (x2 − 2x)dx Câu 36 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = 2loga e B P = C P = + 2(ln a)2 D P = ln a x2 + mx + đạt cực tiểu điểm x = x+1 C m = D m = −1 Câu 37 Tìm tất giá trị tham số m để hàm số y = A Không có m B m = π R2 Câu 38 Biết sin 2xdx = ea Khi giá trị a là: A ln B C − ln D Trang 3/4 Mã đề 001 Câu 39 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = m = −10 B m = m = −16 C m = D m = √ Câu 40 Tính đạo hàm hàm số y = log4 x2 − 1 x x x A y′ = √ B y′ = C y′ = D y′ = (x − 1)log4 e (x − 1) ln 2(x − 1) ln x2 − ln Câu 41 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A −4 ≤ m ≤ −1 B −3 ≤ m ≤ C m < D m > −2 Câu 42 Chọn mệnh đề mệnh đề sau: R R e2x (2x + 1)3 +C B e2x dx = + C A (2x + 1)2 dx = R R C sin xdx = cos x + C D x dx =5 x + C Câu 43 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), S A = 2a Gọi α số đo √ góc đường thẳng S√B mp(S AC) Tính giá√trị sin α 15 15 A B C D 10 Câu 44 Cho tứ diện DABC, tam giácABC vuông B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, hình chóp DABC có bán √ kính √ BC = 4a, DA = 5a Bán√kính mặt cầu ngoại tiếp √ 5a 5a 5a 5a A B C D 3 2 √ Câu 45 Tính đạo hàm hàm số y = log4 x2 − x x x B y′ = C y′ = √ D y′ = A y′ = 2 (x − 1)log4 e (x − 1) ln 2(x − 1) ln x2 − ln Câu 46 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 6π B 8π C 10π D 12π Câu 47 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = m = −10 B m = C m = D m = m = −16 x2 Câu 48 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( ) = 8 1 1 A B C D 128 32 64 Câu 49 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = 0.√ √ A R = B R = 14 C R = 15 D R = r 3x + Câu 50 Tìm tập xác định D hàm số y = log2 x−1 A D = (1; +∞) B D = (−∞; 0) C D = (−∞; −1] ∪ (1; +∞) D D = (−1; 4) - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001