Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hai số thực x, y thỏa mãn hệ điều kiện x[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux > thìy < −15 B Nếu < x < π y > − 4π2 C Nếux = y = −3 D Nếu < x < y < −3 Câu Hàm số sau khơng có cực trị? A y = cos x C y = x3 − 6x2 + 12x − B y = x4 + 3x2 + D y = x2 Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 60a3 B 20a3 C 100a3 D 30a3 √ Câu Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối trịn xoay tạo thành? π 10π C V = D V = π A V = B V = 3 Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (−2; 0; 0) B (0; −2; 0) C (0; 6; 0) D (0; 2; 0) Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m > B m < C m ≤ D m ≥ Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m > 2e B m > e2 C m ≥ e−2 D m > Câu Cho hình S ABCcó cạnh đáy a cạnh bên √ b Thể tích khối chóp là: √ chóp 2 3ab a 3b2 − a2 B VS ABC = A VS ABC = 12 q 12 √ √ a2 b2 − 3a2 3a b C VS ABC = D VS ABC = 12 12 Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = −2 B m = −15 C m = 13 D m = Câu 10 Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số đồng biến R B Hàm số nghịch biến R C Hàm số nghịch biến (0; +∞) D Hàm số đồng biến (−∞; 0) ∪ (0; +∞) Câu 11 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 0; 5) B (0; −5; 0) C (0; 1; 0) D (0; 5; 0) Câu 12 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 B C(6; 21; 21) C C(20; 15; 7) D C(6; −17; 21) A C(8; ; 19) Trang 1/5 Mã đề 001 Câu 13 Cho a > 1; < x < y Bất đẳng thức sau đúng? A loga x > loga y B ln x > ln y C log x > log y D log x > log y a Câu 14 Giá trị nhỏ hàm số y = A y = R B y = R x2 a x tập xác định +1 C y = − D y = −1 R R Câu 15 Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường hypebol B Đường parabol C Đường trịn D Đường elip Câu 16 Tính I = R1 √3 7x + 1dx A I = 45 28 B I = 20 C I = 60 28 x+1 (C) có đường tiệm cận x−2 B y = x = C y = x = −1 D I = 21 Câu 17 Đồ thị hàm số y = A y = x = D y = −1 x = x−1 y+2 z = = không qua điểm đây? −1 B (−1; −3; 1) C (1; −2; 0) D (3; −1; −1) Câu 18 Đường thẳng (∆) : A A(−1; 2; 0) Câu 19 Cho lăng trụ đứng ABC.A′ B′C ′ có cạnh BC = 2a, góc hai mặt phẳng (ABC) (A′ BC)bằng 600 Biết diện tích tam giác ∆A′ BC 2a2 Tính thể tích V khối lăng trụ ABC.A′ B′C ′ √ √ 2a3 a3 D V = C V = a3 A V = 3a3 B V = 3 √ Câu 20 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường trịn có phương trình: √ A (x + 4)2 + (y − 8)2 = √5 B (x + 4)2 + (y − 8)2 = 20 C (x − 4)2 + (y + 8)2 = D (x − 4)2 + (y + 8)2 = 20 Câu 21 Tập nghiệm bất phương trình log3 (10 − x+1 ) ≥ − x chứa số nguyên A B C Vô số D Câu 22 Cho tam giác nhọn ABC, biết quay tam giác quanh cạnh AB, BC, CA ta lần 3136π 9408π , Tính diện tích tam giác ABC lượt hình trịn xoay tích 672π, 13 A S = 96 B S = 364 C S = 1979 D S = 84 Câu 23 Cho hình phẳng (H) giới hạn đồ thị hàm số y = x2 đường thẳng y = mx với m , Hỏi có số nguyên dương m để diện tích hình phẳng (H) số nhỏ 20 A B C D Câu 24 Cho hàm số y = f (x) có bảng biến thiên sau : Hàm số cho đồng biến khoảng đây? A (1; +∞) B (−∞; 1) C (−1; 0) 1 + + + ta được: loga x loga2 x logak x k(k + 1) k(k + 1) B M = C M = loga x 3loga x D (0; 1) Câu 25 Rút gọn biểu thức M = A M = k(k + 1) 2loga x D M = 4k(k + 1) loga x Câu 26 Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A B C −6 D Trang 2/5 Mã đề 001 √ Câu 27 Cho hình chóp S ABC có S A⊥(ABC), S A = a Tam giác ABC vuông cân B, AC = 2a Thể tích √ khối chóp S ABC √ √ 3 √ a3 2a a B C a3 A D Câu 28 Đồ thị hàm số sau có điểm cực trị: A y = 2x4 + 4x2 + B y = x4 + 2x2 − C y = x4 − 2x2 − D y = −x4 − 2x2 − Câu 29 Trong hệ tọa độ Oxyz, cho A(1; 2; 3), B(−3; 0; 1) Mặt cầu đường kính AB có phương trình A (x + 1)2 + (y − 1)2 + (z − 2)2 = B (x + 1)2 + (y − 1)2 + (z − 2)2 = 24 √ C (x − 1)2 + (y + 1)2 + (z + 2)2 = D (x + 1)2 + (y − 1)2 + (z − 2)2 = Câu 30 Họ nguyên hàm hàm số y = (x − 1)e x là: A xe x−1 + C B (x − 2)e x + C C xe x + C D (x − 1)e x + C Câu 31 Cho hình chóp S ABCD có cạnh đáy a Gọi M, N trung điểm SA BC o Biết góc MN mặt phẳng √ (ABCD) 60 Tính √ sin góc MN và√mặt phẳng (S BD) 10 A B C D 5 Câu 32 Tìm tất giá trị tham số m để hàm số y = (m + 2) biến R A m ≤ B m ≥ −8 x3 − (m + 2)x2 + (m − 8)x + m5 nghịch C m < −3 Câu 33 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( A 128 B 64 C 32 D m ≤ −2 x )=8 D Câu 34 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 − sin 3x)5 x+cos3x ln B y′ = x+cos3x ln C y′ = (1 + sin 3x)5 x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln √ 2x − x2 + Câu 35 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Câu 36 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường tròn đáy nằm mặt cầu (S ) Thể √ √ √ √ tích khối trụ (T ) lớn 500π 125π 250π 400π A B C D 9 Câu 37 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 38 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y + 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = R ax + b 2x Câu 39 Biết a, b ∈ Z cho (x + 1)e2x dx = ( )e + C Khi giá trị a + b là: A B C D Câu 40 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 25 23 29 27 A B C D 4 4 Trang 3/5 Mã đề 001 Câu 41 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080253 đồng C 36080254 đồng B 36080255 đồng D 36080251 đồng Câu 42 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y + 3z − = Một véc tơ pháp tuyến (P) −n = (1; −2; −1) −n = (1; −2; 3) −n = (1; 3; −2) −n = (1; 2; 3) A → B → C → D → Câu 43 Đạo hàm hàm số y = (2x + 1) tập xác định − B (2x + 1) ln(2x + 1) − A − (2x + 1) − C − (2x + 1) − D 2(2x + 1) ln(2x + 1) − Câu 44 Cho số phức z1 = − 4i; z2 = − i, phần ảo số phức z1 z2 A −7 B C D −1 z = Biết tập hợp điểm biểu diễn số phức zlà đường Câu 45 Cho số phức zthỏa mãn i + tròn (C) Tính bán kính rcủa đường trịn (C) √ √ B r = C r = D r = A r = Câu 46 Cân phân công ban tư môt tô 10 ban đê lam trưc nhât Hoi co cach phân công khac A C10 B 310 C 103 D A310 Câu 47 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) N( 3; 2; −1) Đường thẳng MN có phương trình tham số A x = + 2ty = 2tz = + t B x = − ty = tz = + t C x = + ty = tz = − t D x = + ty = tz = + t Câu 48 Cho cấp số nhân (un ) với u1 = công bội q = −2 Số hạng thứ cấp số nhân A 192 B −384 C −192 D 384 Câu 49 Trong không gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) điểmM(1; 2; 2)thuộc mặt cầu Phương trình (S ) √ A (x − 1)2 + (y − 4)2 + (z + 2)2 = 40 B (x + 1)2 + (y + 4)2 + (z − 2)2 = 40 C (x − 1)2 + (y − 4)2 + (z + 2)2 = 10 D (x + 1)2 + (y + 4)2 + (z − 2)2 = 40 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001