Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Tập tất cả các giá trị của tham số m để đồ th[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = [ 0; +∞) B S = (−∞; 2) C S = [ -ln3; +∞) D S = (−∞; ln3) Câu Tính I = R1 √3 7x + 1dx 20 60 21 45 B I = C I = D I = 28 28 Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m > e2 B m > 2e C m ≥ e−2 D m > ax + b Câu Cho hàm số y = có đồ thị hình vẽ bên Kết luận sau sai? cx + d A ad > B ab < C ac < D bc > A I = Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (−2; 1; 2) B (−2; −1; 2) C (2; −1; 2) D (2; −1; −2) Câu Kết đúng? R sin3 x + C A sin x cos x = 3 R sin x C sin2 x cos x = − + C B R sin2 x cos x = cos2 x sin x + C sin2 x cos x = −cos2 x sin x + C p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux = y = −3 B Nếux > thìy < −15 C Nếu < x < π y > − 4π D Nếu < x < y < −3 D R Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; 2; 0) B (−2; 0; 0) C (0; −2; 0) D (0; 6; 0) Câu Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện√tích lớn bằng? √ √ 3 3 (m ) B (m ) C 3(m2 ) D (m2 ) A Câu 10 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(5; 9; 5) B C(−3; 1; 1) C C(1; 5; 3) D C(3; 7; 4) √ d = 1200 Gọi Câu 11 Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC K, I lần√lượt trung điểm cạnh √ CC1 , BB1 Tính khoảng √ cách từ điểm I đến mặt phẳng (A1 BK) √ a a a 15 A B C D a 15 Câu 12 Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Trang 1/4 Mã đề 001 √ Câu 13 Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 A ( ; +∞) B (0; ) C (0; 1) D (1; +∞) 4 Câu 14 Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 m2 − 12 m2 − 4m2 − m2 − 12 A B C D 2m 2m 2m m Câu 15 Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V A B C D Câu 16 Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 A < m < B m < C m < D Không tồn m 3 Câu 17 Đồ thị hàm số sau có vô số đường tiệm cận đứng? A y = sin x B y = x3 − 2x2 + 3x + 3x + C y = tan x D y = x−1 Câu 18 Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A m ≥ B m ∈ (0; 2) C m ∈ (−1; 2) D −1 < m < 2 Câu 19 Một mặt cầu có diện tích 4πR thể tích khối cầu A πR3 B πR3 C πR3 D 4πR3 Câu R20 Công thức sai? R A R a x = a x ln a + C B R cos x = sin x + C C sin x = − cos x + C D e x = e x + C √ x Câu 21 Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H2) B (H3) C (H4) D (H1) ax + b Câu 22 Cho hàm số y = có đồ thị hình vẽ bên Kết luận sau sai? cx + d A ac < B bc > C ab < D ad > Câu 23 Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = (−∞; 2) B S = (−∞; ln3) C S = [ 0; +∞) D S = [ -ln3; +∞) Câu 24 Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R? A m > B m > 2e C m > e2 D m ≥ e−2 Câu 25 Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường tròn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 2π 3π B √ C 3π D A 3π 3 2x − Câu 26 Với giá trị tham số m hàm số y = đạt giá trị lớn đoạn [1; 3] x + m2 : √ A m = ±3 B m = ±1 C m = ± D m = ±2 Trang 2/4 Mã đề 001 Câu 27 Cho hình chóp S ABCD có cạnh đáy a Gọi M, N trung điểm SA BC o Biết góc √ sin góc MN và√mặt phẳng (S BD) √ MN mặt phẳng (ABCD) 60 Tính 10 B C D A 5 m Câu 28 Xác định tập tất giá trị tham số m để phương trình 2x + x − 3x − = − 2 có nghiệm phân biệt 19 A S = (−3; −1) ∪ (1; 2) B S = (−5; − ) ∪ ( ; 6) 4 19 19 C S = (−2; − ) ∪ ( ; 7) D S = (−2; − ) ∪ ( ; 6) 4 4 Câu 29 Nguyên hàm F(x) hàm số f (x) = 2x2 + x3 − thỏa mãn điều kiện F(0) = x4 x4 A x3 + − 4x B x3 + − 4x + C x3 − x4 + 2x D 2x3 − 4x4 4 x3 Câu 30 Tìm tất giá trị tham số m để hàm số y = (m + 2) − (m + 2)x2 + (m − 8)x + m5 nghịch biến R A m ≤ B m < −3 C m ≤ −2 D m ≥ −8 Câu 31 Cường độ trận động đất M (richter) cho công thức M = log A − log A0 , với A biên độ rung chấn tối đa A0 biên độ chuẩn (hằng số) Đầu kỷ 20, trận động đất San Francisco có cường độ 8,3 độ Richter Trong năm đó, trận động đất khác Nam Mỹ có biên độ mạnh gấp lần Cường độ trận động đất Nam Mỹ có kết gần bằng: A 11 B 8,9 C 33,2 D 2,075 1 + + + ta được: Câu 32 Rút gọn biểu thức M = loga x loga2 x logak x k(k + 1) k(k + 1) 4k(k + 1) k(k + 1) A M = B M = C M = D M = 2loga x loga x loga x 3loga x Câu 33 Cho hàm số y = x −3x Tính y′ A y′ = x −3x ln C y′ = (2x − 3)5 x −3x ln B y′ = (2x − 3)5 x −3x D y′ = (x2 − 3x)5 x −3x ln Câu 34 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 6π B 8π C 12π D 10π Câu 35 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = − (x2 − 2x)dx + (x2 − 2x)dx B C D R3 R2 |x2 − 2x|dx = (x2 − 2x)dx + R3 1 R3 R2 R3 1 R3 R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx = (x2 − 2x)dx − Câu 36 Biết π R2 (x2 − 2x)dx |x2 − 2x|dx (x2 − 2x)dx sin 2xdx = ea Khi giá trị a là: A B − ln C ln D Câu 37 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M Trang 3/4 Mã đề 001 10 31 11 17 21 10 16 A M( ; ; ) B M( ; ; ) C M( ; ; ) D M( ; ; ) 3 3 3 3 3 Câu 38 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y + 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 39 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 40 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 2mn + 2n + A log2 2250 = B log2 2250 = n m 2mn + n + 3mn + n + D log2 2250 = C log2 2250 = n n Câu 41 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (3; 5) B (−1; 1) C (1; 5) D (−3; 0) r 3x + Câu 42 Tìm tập xác định D hàm số y = log2 x−1 A D = (1; +∞) B D = (−1; 4) ———————————————– C D = (−∞; 0) D D = (−∞; −1] ∪ (1; +∞) Câu 43 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −4 B −2 C D Câu 44 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), √ S A = 2a Gọi α số đo √ góc đường thẳng S√B mp(S AC) Tính giá trị sin α 15 15 A B C D 10 Câu 45 Gọi giá trị lớn giá trị nhỏ hàm số y = x − 4x đoạn [−1; 2] M, m Tính tổng M + m A B C D Câu 46 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (3; 5) B (−3; 0) C (1; 5) D (−1; 1) Câu 47 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 6a3 B 4a3 C 12a3 D 3a3 Câu 48 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −2x4 + 4x2 B y = −x4 + 2x2 + C y = x3 − 3x2 D y = −x4 + 2x2 Câu 49 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A m > −2 B −4 ≤ m ≤ −1 C m < D −3 ≤ m ≤ r 3x + Câu 50 Tìm tập xác định D hàm số y = log2 x−1 A D = (−∞; −1] ∪ (1; +∞) B D = (−∞; 0) C D = (1; +∞) D D = (−1; 4) - - - - - - - - - - HẾT- - - - - - - - - Trang 4/4 Mã đề 001