Tài liệu Free pdf LATEX (Đề thi có 4 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a,[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a A a B C D Câu Hình chóp tứ giác có mặt phẳng đối xứng? A mặt B mặt C mặt D mặt Câu Cho hàm số y = x3 − 3x2 + Tích giá trị cực đại giá trị cực tiểu A −3 B −6 C D Câu [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu [4-1242d] Trong tất số phức z thỏa mãn |z − + 2i| = |z + − 4i| Tìm giá trị nhỏ môđun z √ √ √ √ 13 D B 13 C A 26 13 Câu [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 3) B (2; 4; 4) C (2; 4; 6) D (1; 3; 2) log 2x Câu [3-1229d] Đạo hàm hàm số y = x2 − ln 2x 1 − log 2x − ln 2x 0 C y = D y = B y = A y0 = x3 x3 ln 10 2x3 ln 10 2x3 ln 10 Câu Khối đa diện thuộc loại {4; 3} có đỉnh, cạnh, mặt? A đỉnh, 12 cạnh, mặt B đỉnh, 12 cạnh, mặt C đỉnh, 12 cạnh, mặt D đỉnh, 12 cạnh, mặt Câu 9.√ Biểu thức sau khơng có nghĩa −3 A −1 B 0−1 √ C (− 2)0 D (−1)−1 Câu 10 √ Thể tích khối lăng√trụ tam giác có cạnh là: √ 3 3 A B C D 12 4 Câu 11 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = −e + B xy = e + C xy0 = ey − D xy0 = −ey − Câu 12 Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 B Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm Trang 1/4 Mã đề Câu 13 Tập số x thỏa mãn log0,4 (x − 4) + ≥ A (4; 6, 5] B (−∞; 6, 5) C (4; +∞) D [6, 5; +∞) Câu 14 Khối đa diện loại {3; 4} có số cạnh A B D 10 C 12 Câu 15 [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% tháng Biết không rút tiền khỏi ngân hàng sau tháng, số tiền lãi nhập vào vốn ban đầu để tính lãi cho tháng Hỏi sau tháng, người lĩnh số tiền (cả vốn lẫn lãi) gần với số tiền đây, khoảng thời gian người khơng rút tiền lãi suất không thay đổi? A 102.016.000 B 102.424.000 C 102.016.000 D 102.423.000 [ = 60◦ , S O Câu 16 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ BC) √ √ với mặt đáy S O = a Khoảng cách từ A đến (S √ a 57 2a 57 a 57 B a 57 C D A 17 19 19 Câu 17 Tính lim A +∞ x→1 x3 − x−1 B −∞ C D ! − 12x = có nghiệm thực? 12x − A Vô nghiệm B C D π π Câu 19 Cho hàm số y = sin x − sin x Giá trị lớn hàm số khoảng − ; 2 A B C D −1 Câu 18 [2] Phương trình log x log2 Câu 20 [2-c] Giá trị nhỏ hàm số y = (x2 − 2)e2x đoạn [−1; 2] A 2e2 B −2e2 C 2e4 D −e2 Câu 21 Giá√trị cực đại hàm số y = √ x − 3x − 3x + √ A −3 + B −3 − C + √ D − [ = 60◦ , S A ⊥ (ABCD) Câu 22 Cho hình chóp S ABCD có đáy ABCD hình thoi cạnh a góc BAD Biết rằng√ khoảng cách từ A đến cạnh S C a Thể tích khối√chóp S ABCD √ √ a3 a3 a3 A B a C D 12 Câu 23 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 2a, tam giác S AB đều, H trung điểm cạnh AB, √biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD √ a3 a3 4a3 2a3 A B C D 3 Câu 24 Khối chóp ngũ giác có số cạnh A 11 cạnh B 12 cạnh Câu 25 Tính lim A cos n + sin n n2 + B −∞ C 10 cạnh D cạnh C D +∞ Câu 26 Khối lập phương có đỉnh, cạnh mặt? A đỉnh, 12 cạnh, mặt B đỉnh, 10 cạnh, mặt C đỉnh, 12 cạnh, mặt D đỉnh, 12 cạnh, mặt 2 sin x Câu 27 + 2cos x √ √ [3-c] Giá trị nhỏ giá trị lớn hàm số f (x) √ =2 A 2 B C 2 D Trang 2/4 Mã đề Câu 28 [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% tháng Biết không rút tiền khỏi ngân hàng sau tháng, số tiền lãi nhập vào vốn ban đầu để tính lãi cho tháng Hỏi sau tháng, người lĩnh số tiền khơng 110 triệu đồng (cả vốn lẫn lãi), biết thời gian gửi tiền người khơng rút tiền lãi suất không thay đổi? A 18 tháng B 15 tháng C 17 tháng D 16 tháng Câu 29 Tìm m để hàm số y = x4 − 2(m + 1)x2 − có cực trị A m > B m ≥ C m > D m > −1 q Câu 30 [3-12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 2] B m ∈ [0; 4] C m ∈ [0; 1] D m ∈ [−1; 0] x − 12x + 35 Câu 31 Tính lim x→5 25 − 5x 2 A B − C +∞ D −∞ 5 Câu 32 Cho hình chóp S ABC có đáy ABC tam giác vuông cân B với AC = a, biết S A ⊥ (ABC) S B hợp √ với đáy góc 60◦ Thể √ tích khối chóp S ABC √ √ a3 a3 a3 a3 B C D A 24 24 48 π x Câu 33 [2-c] Giá trị lớn hàm số y = e cos x đoạn 0; √ √ π3 π6 π4 B e C D e e A 2 Câu 34 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = − x2 y = x 11 A B C D 2 Câu 35 [3-1212h] Cho hình lập phương ABCD.A0 B0C D0 , gọi E điểm đối xứng với A0 qua A, gọi G la trọng tâm tam giác EA0C Tính tỉ số thể tích k khối tứ diện GA0 B0C với khối lập phương ABCD.A0 B0C D0 1 1 B k = C k = D k = A k = 18 15 Câu 36 [2-c] Giá trị lớn hàm số y = xe−2x đoạn [1; 2] 1 A B √ C 2e e e Câu 37 [2] Tổng nghiệm phương trình log4 (3.2 x − 1) = x − A B C D e3 D Câu 38 [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% năm Ông muốn hoàn nợ ngân hàng theo cách: Sau tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp cách tháng, số tiền hoàn nợ lần trả hết tiền nợ sau tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng lần hoàn nợ bao nhiêu? Biết lãi suất ngân hàng không đổi thời gian ông A hoàn nợ 100.(1, 01)3 100.1, 03 A m = triệu B m = triệu 3 (1, 01) 120.(1, 12)3 C m = triệu D m = triệu (1, 01)3 − (1, 12)3 − Câu 39 [4-1243d] Trong tất số phức z thỏa mãn hệ thức |z − + 3i| = |z − − 5i| Tìm giá trị nhỏ |z + + i| √ √ √ √ 12 17 A 34 B 68 C D 17 Trang 3/4 Mã đề Câu 40 [1] Tập nghiệm phương trình log2 (x2 − 6x + 7) = log2 (x − 3) A {3} B {5; 2} C {2} D {5} log7 16 Câu 41 [1-c] Giá trị biểu thức log7 15 − log7 15 30 A −4 B C D −2 Câu 42 Cho hình chóp S ABCD có đáy ABCD hình chữ nhật AB = 2a, BC = 4a (S AB) ⊥ (ABCD) Hai mặt bên (S BC) (S AD) hợp với đáy góc 30◦ √Thể tích khối chóp S ABCD √ √ √ 3 3 4a a 8a 8a A B C D 9 Câu 43 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ a a B a D 2a A C Câu 44 Tập hợp điểm mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 số ảo A Đường phân giác góc phần tư thứ B Trục thực C Hai đường phân giác y = x y = −x góc tọa độ D Trục ảo Câu 45 Tìm giá trị lớn chất hàm số y = x3 − 2x2 − 4x + đoạn [1; 3] A −7 B −2 C −4 D 67 27 Câu 46 Tìm giá trị nhỏ hàm số y = (x2 − 2x + 3)2 − A −5 B −3 C Không tồn D −7 2n + Câu 47 Tính giới hạn lim 3n + 2 C D A B Câu 48 [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% năm Biết không rút tiền khỏi ngân hàng sau năm, số tiền lãi nhập vào vốn ban đầu Sau năm rút lãi người thu số tiền lãi A 70, 128 triệu đồng B 50, triệu đồng C 20, 128 triệu đồng D 3, triệu đồng Câu 49 Hàm số y = x3 − 3x2 + đồng biến trên: A (−∞; 0) (2; +∞) B (0; +∞) C (0; 2) D (−∞; 2) Câu 50 [1] Cho a số thực dương tùy ý khác Mệnh đề đúng? 1 A log2 a = loga B log2 a = C log2 a = D log2 a = − loga loga log2 a - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 D A A C C B C B 10 D 12 C 13 A 14 C 15 16 18 D C 19 A 20 D 21 A 22 D 23 C D 25 26 A C 27 A 28 D 29 30 D 31 A 32 D 33 C 34 A 37 B 17 B 24 C 11 B D 36 C 38 C 40 D 41 A 42 D 43 A 44 C 46 C 48 C 39 45 47 C B C 49 A 50 B ... khác Mệnh đề đúng? 1 A log2 a = loga B log2 a = C log2 a = D log2 a = − loga loga log2 a - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 D... 3)2 − A −5 B −3 C Không tồn D −7 2n + Câu 47 Tính giới hạn lim 3n + 2 C D A B Câu 48 [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% năm Biết không rút tiền khỏi ngân... 3i| = |z − − 5i| Tìm giá trị nhỏ |z + + i| √ √ √ √ 12 17 A 34 B 68 C D 17 Trang 3/4 Mã đề Câu 40 [1] Tập nghiệm phương trình log2 (x2 − 6x + 7) = log2 (x − 3) A {3} B {5; 2} C {2} D {5} log7