1. Trang chủ
  2. » Giáo án - Bài giảng

Bài giảng vật lý đại cương

33 1,9K 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 33
Dung lượng 1,06 MB

Nội dung

Bài giảng vật lý đại cương

Bài giảng VẬT ĐẠI CƯƠNG Hệ : Đại Học Liên Thông GV : Phạm Thị Mai – Bộ môn : KHCB Mục lục Bài giảng: vật đại cương - Hệ : Đại học liên thông 3 Chương 1: Những cơ sở về quang học 3 I)Những cơ sở của quang hình học: 3 II) Những cơ sở của quang học sóng: 4 Phương pháp đới cầu Frênen 17 2- Nhiễu xạ của sóng cầu qua một lỗ tròn : 17 5) Sự phân cực do lưỡng chiết 21 3) Các định luật quang điện: 24 CÂU HỎI THẢO LUẬN VÀ BÀI TẬP QUANG ĐIỆN 26 Phần thứ hai: Vật lí nguyên tử và hạt nhân 27 2.1. Cấu trúc nguyên tử - Đơn vị khối lượng nguyên tử 27 2.2. Cấu trúc Hạt nhân Các quy luật vận động của các hạt vi mô 29 Đề kiểm tra 32 Bài giảng: vật đại cương - Hệ : Đại học liên thông GV : Phạm Thị Mai – Bộ môn : KHCB Phần thứ nhất : Quang học Phần này mục đích giúp cho SV trang bị thêm các kiến thức về quang học sóng và quang lượng tử, trên cơ sở đó hiểu được các ứng dụng của các hiện tượng quang học vào trong các thiết bị trong kỹ thuật. 1. Quang học sóng : Hiện tượng nhiễu xạ; Sự phân cực của ánh sáng. 2. Quang lượng tử : Sự bức xạ nhiệt; Hiệu ứng quang điện. Phương pháp nghiên cứu của phần này là vừa dựa vào kết quả thực nghiệm, vừa dựa vào lí luận có tính thực tế. Chương 1: Những cơ sở về quang học 1.1. Hiện tượng giao thoa, nhiễu xạ, Sự phân cực của ánh sáng 1.1.1. Những cơ sở quang học liên quan đến hiện tượng giao thoa I)Những cơ sở của quang hình học: a)Khái niệm về quang lộ: + Quang lộ của ánh sáng trên đoạn đường AB trong một môi trường đồng chất là đại lượng đo bằng tích số giữa chiết suất n của môi trường đó với độ dài l của đoạn đường AB mà ánh sáng đi được trong môi trường: [ ] lnABL . == + Quang lộ L của ánh sáng trên đoạn đường AB khi đi qua một hay nhiều môi trường có chiết suất khác nhau bằng đoạn đường mà ánh sáng đi được khi nó truyền trong chân không với cùng khoảng thời gian τ mà nó đã dùng để đi hết đoạn đường AB trong một hay nhiều môi trường đó. [ ] ABL = = τ 33221 . 1 clnlnln =+++ Tổngquát: [ ] ABL = = i l n i i n ∑ =1 τ .c = b) Mặt sóng hình học : Là tập hợp của những điểm mà ánh sáng của chùm sáng đó truyền đến ở cùng một thời điểm. - Chùm sáng đồng quy: Mặt sóng hình học là những mặt cầu - Chùm sáng song song:Mặt sóng hình học là những mặt phẳng c) Định lí Maluýt: Quang lộ của các tia sáng giữa cùng hai mặt sóng hình học đều bằng nhau. II) Những cơ sở của quang học sóng: a)Thuyết điện từ ánh sáng của Mắcxuen: + ánh sáng (thấy được) là những sóng điện từ có bước sóng nằm trong khoảng từ 0,40µm đến 0,76µm, truyền trong chân không với vận tốc C = 3.10 8 m/s. + Véc tơ cừơng độ điện trường E  trong sóng ánh sáng được gọi là véc tơ sóng sáng, + Véc tơ E  vuông góc với vận tốc truyền sóng nên sóng ánh sáng là sóng ngang. + Mỗi ánh sáng tương ứng với một giá trị xác định λo có màu sắc riêng, được gọi là ánh sáng đơn sắc. b) Cường độ sáng:( là đại lượng đặc trưng cho độ sáng tại từng điểm) + Định nghĩa: Cường độ sáng I tại một điểm được xác định bằng năng lượng ánh sáng truyền qua một đơn vị diện tích đặt vuông góc với phương truyền ánh sáng tại điểm đó, trong một đơn vị thời gian. + Biểu thức: I = ka 2 với k: hệ số tỉ lệ , a: là biên độ dao động của sóng sáng + Phương trình sóng ánh sáng: ) 2 sin(. ϕ π += t T ax , trong đó: x là giá trị tức thời của E tại thời điểm t, a là biên độ dao động của sóng sáng T là chu kỳ dao động. c) Các nguyên lý: + Nguyên chồng chất các sóng: Tại giao điểm của hai hay nhiều sóng sáng, từng sóng riêng biệt không bị các sóng khác làm nhiễu loạn, tại điểm giao đó véc tơ sóng sáng tổng bằng tổng các véc tơ sóng sáng của các sóng tới giao nhau. + Nguyên Huyghen - Frênen: - Mỗi điểm của môi trường có sóng sáng truyền tới đều được coi là nguồn sáng thứ cấp,phát ra những sóng sáng gửi về phía trước nó. - Nguồn sáng thứ cấp có biên độ và pha dao động là biên độ và pha dao động của nguồn sáng thực S gây ra tại vị trí của nguồn sáng thứ cấp đó. 1.1.2. Hiện tượng giao thoa * Thí nghiệm: - S: Nguồn sáng điểm - E 1 : Màn chắn có 2 khe hẹp S 1 và S 2 - E 2 : Màn hứng ảnh *Hiện tượng: Hiện tượng hai hay nhiều sóng ánh sáng giao nhau tạo ra trong không gian những miền sáng và tối gọi là hiện tượng giao thoa ánh sáng. Các miền sáng và tối đó gọi là các vân giao thoa. *Điều kiện để có hiện tượng giaothoa: thuyết giao thoa được xây dựng trên cơ sở áp dụng nguyên chồng chất, đó là tổng hợp hai thành phần dao động của sóng ánh sáng giao nhau tại một điểm. Do vậy: + Hai nguồn sóng phát ra dao động có cùng tần số. + Các dao động sóng sáng truyền tới phải cùng phương. + Hiệu số pha của hai dao động sóng sáng tại một điểm không thay đổi theo thời gian. Hai nguồn sóng thoả mãn các điều kiện trên được gọi là hai nguồn kết hợp. a) Điều kiện để có cực đại và cực tiểu giao thoa: * Khảo sát với nguồn sáng đơn sắc. Trong miền sẩy ra sự giao thoa của ánh sáng đơn sắc: xuất hiện những vân sáng, vân tối xen kẽ một cách đều đặn (vân sáng có màu là màu của ánh sáng đơn sắc) + Vị trí vân sáng: S1 S2 S M O l 1 l 2 d1 d2 L D x E1 E2 Nếu tại điểm M trên màn có ∆d = kλ ( k∈Z), thì tại M là vân sáng. Khi đó x s = k. a D λ + Vị trí vân tối: Nếu tại điểm N trên màn có ∆d = ( k+ ) 2 1 λ (k∈Z), thì tại N là vân tối. Khi đó x t = (k+ ) 2 1 . a D λ + Khoảng vân: Là khoảng cách giữa hai vân sáng hoặc hai vân tối liên tiếp i = a D λ * Khảo sát với ánh sáng trắng: + ánh sáng trắng là tập hợp của nhiều thành phần đơn sắc có bước sóng biến thiên liên tục từ mầu đổ đến mầu tím.( λ= 0,76 µ m → 0,40 µ m) + Mỗi một thành phần đơn sắc( có bước sóng nhất định) cho một hệ vân giao thoa xác định ở trên màn, các vân sáng có màu sắc, khoảng vân xác định. Trong miền sẩy ra sự giao thoa của ánh sáng trắng: - Tai vị trí vân trung tâm có sự tập hợp của các thành phần đơn sắc có bước sóng biến thiên liên tục từ mầu đổ đến mầu tím, nên vân trung tâm là vân sáng có màu trắng. Một điểm khác bất kỳ ở trên màn có toạ độ x sẽ là tập hợp giữa vân sáng của các thành phần đơn sắc này với vân tối của các thành phần đơn sắc khác. - Đối xứng 2 bên của vân trung tâm là những dải màu, có màu biến đổi liên tục từ đỏ đến tím ( được gọi là dải quang phổ) - Các dải quang phổ đều có mầu tím trong, mầu đổ ngoài. Các dải quang phổ có bậc càng cao thi bề rộng càng lớn BÀI TẬP GIAO THOA Dạng 1: xác định giá trị các đại lượng * Vị trí vân giao thoa: - Vân sáng : x s = k. a D λ ( vân sáng bậc k, với K = ± n) - Vân tối : x t = (k+ ) 2 1 . a D λ . ( vân tối thứ k, với K = n-1 và - n) * Khoảng vân : i = a D λ * Xác định i theo bề rộng trường vân: -Nếu trường vân được giới hạn bởi các vân cùng loại: i = 1−n L -Nếu trường vân được giới hạn bởi các vân khác loại: i = 2 1 −n L (Với n là số vân cùng loại có trong bề rộng trường vân đó) Dạng 2: xác định khoảng cách giữa các vân x ∆ -Với giao thoa ánh sáng đơn sắc: x ∆ khoảng cách giữa các vân x ∆ = x k + m – x k với m là độ chênh lệch giữa các bậc -Với giao thoa ánh sáng trắng: x∆ bề rộng dải quang phổ x ∆ k = x k /đỏ - x k/ tím = ( a KD λ d -λ t ) Dạng 3: xác định các ánh sáng có vân sáng( hoặc vân tối) nằm trùng tại một điểm( với GTAS trắng) +Ánh sáng đơn sắc có vân sáng tại điểm đang xét (có tọa độ X M ): Thì X M = k. a D λ ⇒ λ = KD Xa M . -Kết hợp với ĐK của bài toán, xác định K bởi : 0,40(µm) ≤ KD Xa M . ≤ 0,76(µm) (Chú ý K chỉ lấy các giá trị nguyên) -Thay giá trị thỏa mãn của K vào biểu thức λ = KD Xa M . để xác định giá trị của λ tương ứng + Ánh sáng đơn sắc có vân tối tại điểm đang xét ( có tọa độ X N ) Thì x N = (k+ ) 2 1 . a D λ . ⇒ λ = D Xa N ) 2 1 +k( . -Kết hợp với ĐK của bài toán, xác định K bởi : 0,40(µm)≤ D Xa N ) 2 1 +k( . ≤ 0,76(µm)(Chú ý K chỉ lấy các giá trị nguyên) -Thay giá trị thỏa mãn của K vào biểu thức λ = D Xa N ) 2 1 +k( . để xác định giá trị của λ tương ứng Dạng 4: xác định độ rời của hệ vân giao thoa do bản mỏng song song + Quang lộ ứng với các đường đi từ 2 nguồn S 1 và S 2 -Đường đi có bản mỏng: l 1 = (d 1 – e) + ne = d 1 + ( n – 1) e -Đường đi không có bản mỏng: l 2 = d 2 Hiệu quang lộ: l 2 – l 1 = d 2 - [ ] ne + e) - (d 1 = (d 2 – d 1 ) – ( n – 1).e l 2 – l 1 = en D xa ).1( . −− ( Vì khi chưa có bản mỏng: d 2 – d 1 = D xa. ) +Vị trí mới của vân sáng: en D Xa ).1( . , −− = k. λ ⇒ x , = k a eDn a D ).1( . − + λ + Độ rời của vân: X o = X , – X =       − + a eDn ).1( a D k λ - k. a D λ = a eDn ).1( − e n S1 S2 S M O l 1 l 2 d1 d2 L D x PhẦN ĐỀ BÀI Bài1: Trong thí nghiệm giao thoa AS khoảng cách giữa 2 khe s 1 và s 2 : a= 4,0mm. Khoảng cách từ mặt phẳng chứa 2 khe đến màn D= 3m.Khoảng cách từ vân trung tâm đến vân sáng thứ 10 là 4,1 mm. a) Tính bước sóng của ánh sáng chiếu tới. vị trí vân sáng bậc 5 và vân tối thứ 4 b) Đặt ngay trước một trong 2 nguồn(s 1 hoặc s 2 ) một bản mỏng có hai mặt song song bằng thủy tinh,bề rộng e= 0,008 mm, chiết suất n = 1,5.Hỏi hệ thống vân sẽ dịch chuyển về phía nào? Dịch chuyển đi một đoạn bằng bao nhiêu? c) Bỏ bản mỏng đi, thay nguồn sáng đơn sắc bằng nguồn AS trắng có bước song giới hạn từ 0,650 µm đến 0,410 µm. Tìm bước sóng của các ánh sáng tạo ra vân tối trên màn quan sát tại điểm M cách trục chính 3m Bài 2: Một nguồn sáng đơn sắc phát ra ánh sáng có bước sóng λ= 0,6 µm. Chiếu ánh sáng trên vào khe hở hẹp song song cách nhau1mm và cách đều nguồn sáng. Trên một màn ảnh đặt song song và cách mặt phẳng chứa 2 khe hở một đoạn D = 1m,ta thu được một hệ thống vân giao thoa. a) Tính khoảng cách giữa 2 vân sáng liên tiếp và khoảng cách giữa vân sáng bậc 5 đến vân tối thứ 7 [...]... độ sáng không thể có giá trị cực đại nữa( vì khi sin ϕ = 0 đó có cực đại giữa rồi,nếu tại K=-1 lại có cực đại thì giữa k=0 và k= -1 phải có một cực tiểu, mà trong khoảng từ k=0 đến k=-1 ko có một giá trị nguyên nào của K nữa nên có nghĩa ko có cực tiểu nào trong khoảng này.Do đó ko có cực đai ứng với k=-1 Tóm lại: *sin ϕ = 0 Có cực đại giữa λ *sin ϕ = k b với k= ± 1 = ±2 = … hay sin ϕ = ± λ b λ λ ,... cực đại giữa) - Nếu khe chứa số lẻ( n= 2k+1) dải sáng, từng cặp dải sáng kế tiếp khử sáng lẫn nhau tại M, còn lại dải sáng thứ (2k+1) thì không bị khử, kết quả tại M có điểm sáng Vậy điều kiện để tại M có điểm sáng là: 2b sin ϕ λ n= = 2k + 1 → sin ϕ = (2k + 1) λ 2b với k = 1 = ±2 = ±3 (Loại trừ giá trị k=0 và k= -1.Vì với k=0 và k = -1 thì sin ϕ=± λ 2b thì cường độ sáng không thể có giá trị cực đại. .. giữa λ *sin ϕ = k b với k= ± 1 = ±2 = … hay sin ϕ = ± λ b λ λ , ± 2 b , ± 3 b ,… Có các cực tiểu nhiễu xạ λ * sin ϕ = (2k + 1) 2b với k = 1 = ±2 = ±3 haysin ϕ = ± 3 λ λ , ± 5 2b ,… 2b có các cực đại nhiễu xạ BÀI TẬP NHIỄU XẠ Phương pháp đới cầu Frênen a- Diện tích của các đới cầu: ∆S = b- Bán kính của đới cầu thứ k: πRro λ R + ro rk = R.ro λ k R + ro c- Biên độ của ánh sáng tổng hợp tại M do các đới... cường 2 2 độ sáng khi ko có chướng ngại nếu n là số chẵn an < a ⇒ I = ( BÀI 1: Chiếu một chùm đơn sắc song song, bước sóng λ= 0,5 µ m,thẳng góc vào một lỗ tròn bán kính r = 1mm.Sau lỗ tròn có đặt một màn quan sát.Hãy xác định khoảng cách lớn nhất từ lỗ trên đến màn quan sát để tâm của hình nhiễu xạ trên màn vẫn là một vết tối BÀI 2: Một chùm tia sáng đơn sắc song song,có bước sóng λ= 0,6 µm, được rọi... tia.Hiện tượng đó gọi là hiện tượng lưỡng chiết và là một trong những hiện tượng thể hiện tính bất đẳng hướng của tinh thể(môi trường bất đẳng hướng là môi trường mà trong đó một số những tính chất vật theo những hướng khác nhau thì khác nhau) b) Sự phân cực ánh sáng do lưỡng chiết: * Hiện tượng: Có một tia sáng tự nhiên rọi vuông góc với mặt bên của tinh thể băng lan thì tại điểm tới I , tia tới... ba (động năng ban đầu cực đại) : 1 Wd max tỉ lệ với λ kt • Thuyết phôton của Anhxtanh : Bức xạ điện từ gồm vô số các hạt gọi là lượng tử ánh sáng hay phôton Với mỗi bức xạ điện từ đơn sắc nhất định, các phôton đều giống nhau và mang một năng lượng xác định bằng ε = hf = h c λ Trong mọi môi trường và trong chân không các phôton truyền đi với cùng vận tốc C = 3 10 8 m/s Khi một vật hấp thụ hay bức xạ điện... trở quang điện (quang trở), điốt quang điện Chế tạo các nguồn quang điện, như pin quang điện( pin mặt trời) CÂU HỎI THẢO LUẬN VÀ BÀI TẬP QUANG ĐIỆN 1) Vẽ và giải thích đồ thị biểu diễn đường đặc trưng Vôn – Am pe ? 2) Giải thích ba định luật quang điện, nêu ứng dụng của HTQĐ BÀI TẬP Ca tốt của một tế bào quang điện làm bằng kim loại có giới hạn quang điện là 0,66 µm Chiếu vào ca tốt ánh sáng có bước... ϕ; các mặt phẳng ∑i cách nhau λ/2 và chia mặt phẳng khe thành các dải Bề rộng của dải là n= λ 2 sin ϕ Và số các dải trên khe là: b 2b sin ϕ = λ / 2 sin ϕ λ ( với b là bề rộng của khe hẹp) Theo nguyên Huyghen thì mỗi dải sáng coi như một nguồn sáng thứ cấp gửi sóng sáng tới điểm M Vì hiệu quang lộ của hai dải kế tiếp nhau là λ , 2 do vậy chúng gây ra tại M, các sóng ánh sáng dao động ngược pha nhau... 2: Một chùm tia sáng đơn sắc song song,có bước sóng λ= 0,6 µm, được rọi vuông góc vào một khe hẹp hình chữ nhật, có bề rộng b = 0,1 mm Ngay sau khe có đặt một thấu kính hội tụ Tìm bề rộng của vân cực đại giữa trên một màn quan sát đặt tại mặt phẳng trên của thấu kính và cách thấu kính một khoảng D = 1m 1.1.4 Hiện tượng phân cực ánh sáng 1) Ánh sáng tự nhiên: ∆ ánh sáng tự nhiên: ánh sáng trong đó các... bóng tối hình học Nàm chắn có lỗ tròn P và bb1 là Màn + Khe hẹp, màn - Cho ánh sáng từ nguồn S truyền qua một lỗ tròn nhỏ p, sau p đặt màn quan sát E, trên E ta nhận được các vệt sáng ab - Theo nguyên truyền thẳng của AS ,nếu thu nhỏ lỗ tròn p thì vệt sáng ab cũng thu nhỏ lại - Kết quả thực nghiệm cho thấy khi thu nhỏ lỗ tròn p đến một giá trị nào đó thì trên màn E xuất hiện những vân tròn sáng tối . Bài giảng VẬT LÝ ĐẠI CƯƠNG Hệ : Đại Học Liên Thông GV : Phạm Thị Mai – Bộ môn : KHCB Mục lục Bài giảng: vật lý đại cương - Hệ : Đại học liên thông 3 Chương 1:. 27 2.2. Cấu trúc Hạt nhân Các quy luật vận động của các hạt vi mô 29 Đề kiểm tra 32 Bài giảng: vật lý đại cương - Hệ : Đại học liên thông GV : Phạm Thị Mai – Bộ môn : KHCB Phần thứ nhất : Quang học . sin b2 λ ϕ ±= thì cường độ sáng không thể có giá trị cực đại nữa( vì khi sin ϕ = 0 đó có cực đại giữa rồi,nếu tại K=-1 lại có cực đại thì giữa k=0 và k= -1 phải có một cực tiểu, mà trong khoảng

Ngày đăng: 17/04/2014, 00:10

TỪ KHÓA LIÊN QUAN

w