Tài liệu Free pdf LATEX (Đề thi có 4 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Cho I = ∫ 3 0 x 4 + 2 √ x + 1 dx = a d + b ln 2 + c ln[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Cho I = Z x √ dx = 4+2 x+1 P = a + b + c + d bằng? A P = 28 B P = a a + b ln + c ln d, biết a, b, c, d ∈ Z phân số tối giản Giá trị d d C P = −2 D P = 16 Câu [2] Tập xác định hàm số y = (x − 1) A D = R \ {1} B D = (−∞; 1) C D = (1; +∞) D D = R Câu Giá √ trị cực đại hàm số y √ = x − 3x − 3x + √ √ A −3 − B + C − D −3 + 2n2 − Câu Tính lim 3n + n4 A B C D a Câu [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = + , với a, b ∈ Z Giá trị a + b b ln A B C D Câu Dãy số sau có giới hạn khác 0? n+1 A B √ n n C n D sin n n Câu Trong khơng gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C D0 , biết tạo độ A(−3; 2; −1), C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4) Tìm tọa độ đỉnh A0 A A0 (−3; −3; −3) B A0 (−3; −3; 3) C A0 (−3; 3; 3) D A0 (−3; 3; 1) Câu [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% năm Ơng muốn hồn nợ ngân hàng theo cách: Sau tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp cách tháng, số tiền hoàn nợ lần trả hết tiền nợ sau tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng lần hoàn nợ bao nhiêu? Biết lãi suất ngân hàng khơng đổi thời gian ơng A hồn nợ 100.1, 03 100.(1, 01)3 triệu B m = triệu A m = 3 (1, 01)3 120.(1, 12)3 C m = triệu D m = triệu (1, 01)3 − (1, 12)3 − x2 − 12x + 35 Câu Tính lim x→5 25 − 5x 2 B +∞ C −∞ D A − 5 Câu 10 [1231d] Hàm số f (x) xác định, liên tục R có đạo hàm f (x) = |x − 1| Biết f (0) = Tính f (2) + f (4)? A 11 B 10 C D 12 Câu 11 Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) đường thẳng x+1 y−5 z d: = = Tìm véctơ phương ~u đường thẳng ∆ qua M, vng góc với đường thẳng 2 −1 d đồng thời cách A khoảng bé A ~u = (2; 1; 6) B ~u = (3; 4; −4) C ~u = (1; 0; 2) D ~u = (2; 2; −1) Câu 12 Tìm m để hàm số y = x3 − 3mx2 + 3m2 có điểm cực trị A m < B m , C m > D m = Trang 1/4 Mã đề Câu 13 Khi tăng độ dài tất cạnh khối hộp chữ nhật lên gấp ba thể tích khối hộp tương ứng sẽ: A Tăng gấp 18 lần B Tăng gấp 27 lần C Tăng gấp lần D Tăng gấp lần Câu 14 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A Vô nghiệm B C D Câu 15 Khối chóp ngũ giác có số cạnh A cạnh B 10 cạnh D 12 cạnh C 11 cạnh Câu 16 Hàm số sau khơng có cực trị x−2 B y = x4 − 2x + A y = 2x + 1 C y = x + D y = x3 − 3x x log(mx) Câu 17 [3-1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m = B m < ∨ m > C m < D m ≤ Câu 18 Tập số x thỏa mãn log0,4 (x − 4) + ≥ A (−∞; 6, 5) B (4; 6, 5] C (4; +∞) D [6, 5; +∞) Câu 19 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (I) B Chỉ có (II) C Cả hai câu sai Câu 20 Mỗi đỉnh hình đa diện đỉnh chung A Năm mặt B Bốn mặt C Hai mặt D Cả hai câu D Ba mặt Câu 21 Cho hình chóp S ABCD có đáy ABCD hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy góc 45◦ AB = 3a, BC = 4a Thể tích khối chóp S ABCD √ 3 10a A 40a3 B 20a3 C 10a3 D Câu 22 Hàm số y = x3 − 3x2 + 3x − có cực trị? A B C D Câu 23 [4-1214h] Cho khối lăng trụ ABC.A0 B0C , khoảng cách từ C đến đường thẳng BB0 2, khoảng √ cách từ A đến đường thẳng BB0 CC √ 3, hình chiếu vng góc A lên mặt phẳng (A0 B0C ) trung điểm M B0C A0 M = Thể tích khối lăng trụ cho √ √ A B C D 3 ! − 12x Câu 24 [2] Phương trình log x log2 = có nghiệm thực? 12x − A B C Vô nghiệm D − xy = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y √ √ 11 − 11 − 19 C Pmin = D Pmin = Câu 25 [12210d] Xét số thực dương x, y thỏa mãn log3 Pmin P = x + √ y √ 18 11 − 29 11 + 19 A Pmin = B Pmin = 21 Trang 2/4 Mã đề Câu 26 Khối lăng trụ tam giác có đỉnh, cạnh, mặt? A đỉnh, cạnh, mặt B đỉnh, cạnh, mặt C đỉnh, cạnh, mặt D đỉnh, cạnh, mặt Câu 27 [3-1213h] Hình hộp chữ nhật khơng có nắp tích 3200 cm3 , tỷ số chiều cao chiều rộng Khi tổng mặt hình nhỏ nhất, tính diện tích mặt đáy hình hộp A 120 cm2 B 160 cm2 C 160 cm2 D 1200 cm2 √ Câu 28 [2] Thiết diện qua trục hình nón trịn xoay tam giác có diện tích a2 Thể tích khối nón √ √ √ √ cho πa3 πa3 πa3 πa3 B V = C V = D V = A V = 6 Câu 29 [2] Cho hàm số f (x) = x x Giá trị f (0) A f (0) = ln 10 B f (0) = C f (0) = 10 D f (0) = ln 10 Câu 30 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A Cả ba câu sai B G(x) = F(x) − C khoảng (a; b), với C số C F(x) = G(x) khoảng (a; b) D F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số Câu 31 Nếu không sử dụng thêm điểm khác ngồi đỉnh hình lập phương chia hình lập phương thành A Bốn tứ diện hình chóp tam giác B Một tứ diện bốn hình chóp tam giác C Năm tứ diện D Năm hình chóp tam giác đều, khơng có tứ diện Z ln(x + 1) dx = a ln + b ln 3, (a, b ∈ Q) Tính P = a + 4b Câu 32 Cho x2 A B C −3 D Câu 33 [1] Tập nghiệm phương trình log2 (x2 − 6x + 7) = log2 (x − 3) A {2} B {3} C {5} D {5; 2} Câu 34 Khối đa diện loại {3; 4} có số đỉnh A B C Câu 35 [1] Cho a > 0, a , Giá trị biểu thức log 1a a2 1 A B C − 2 Câu 36 Điểm cực đại đồ thị hàm số y = 2x − 3x − A (0; −2) B (1; −3) C (2; 2) D 10 D −2 D (−1; −7) Câu 37 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ a a A B C 2a D a Câu 38 Cho hàm số y = x − 3x2 + Tích giá trị cực đại giá trị cực tiểu A −6 B −3 C D Câu 39 Cho hình chóp S ABC có đáy ABC tam giác vng cân B với AC = a, biết S A ⊥ (ABC) S B hợp √ với đáy góc 60◦ Thể √ tích khối chóp S ABC √ √ 3 a a a3 a3 A B C D 48 24 24 Trang 3/4 Mã đề Câu 40 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có f (x) = F(x) C Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 41 Cho hình chóp S ABCD có đáy ABCD hình thoi với AC = 2BD = 2a tam giác S AD vuông cân S√, (S AD) ⊥ (ABCD) Thể√tích khối chóp S ABCD là√ √ a3 a3 a3 a3 B C D A 12 12 Câu 42 Hình hộp chữ nhật có ba kích thước khác có mặt phẳng đối xứng? A mặt B mặt C mặt D mặt Câu 43 [3-12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B < m ≤ C < m ≤ D ≤ m ≤ Câu 44 [2] Cho chóp S ABCD có đáy hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A B a C 2a D a tan x + m nghịch biến khoảng Câu 45 [2D1-3] Tìm giá trị thực tham số m để hàm số y = m tan x + π 0; A [0; +∞) B (−∞; −1) ∪ (1; +∞) C (−∞; 0] ∪ (1; +∞) D (1; +∞) Câu 46 Khi tăng ba kích thước khối hộp chữ nhật lên n lần thể thích tăng lên A n3 lần B n lần C 3n3 lần D n2 lần Câu 47 Khối đa diện loại {3; 5} có số mặt A 12 B 20 C 30 D Câu 48 Khối đa diện loại {3; 3} có số đỉnh A B C D Câu 49 Tổng diện tích mặt khối lập phương 54cm2 Thể tích khối lập phương là: A 64cm3 B 72cm3 C 46cm3 D 27cm3 Câu 50 Mỗi đỉnh hình đa diện đỉnh chung A Năm cạnh B Ba cạnh C Hai cạnh D Bốn cạnh - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 B D A C C B B B 14 15 B 16 A 18 17 A 21 B 22 23 B 24 A C 30 C 35 C 36 A 38 B D B 40 41 C 42 A 43 C 44 49 B 34 A D 39 47 D 32 B 45 B 28 29 A 37 D 26 A B 33 B 20 D 25 D 12 13 19 C 10 D 11 31 B A 27 C D C B 46 A D 48 B D 50 B ... C Hai cạnh D Bốn cạnh - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 B D A C C B B B 14 15 B 16 A 18 17 A 21 B 22 23 B 24 A C 30 C 35 C 36... ABC có đáy ABC tam giác vuông cân B với AC = a, biết S A ⊥ (ABC) S B hợp √ với đáy góc 60◦ Thể √ tích khối chóp S ABC √ √ 3 a a a3 a3 A B C D 48 24 24 Trang 3/4 Mã đề Câu 40 Hàm số F(x) gọi... Nếu không sử dụng thêm điểm khác đỉnh hình lập phương chia hình lập phương thành A Bốn tứ diện hình chóp tam giác B Một tứ diện bốn hình chóp tam giác C Năm tứ diện D Năm hình chóp tam giác đều,