PremierSponsor: GulfPublishingCompany PROGRAMLICENSEAGREEMENT YOUSHOULDREADTHETERMSANDCONDITIONSCAREFULLYBEFOREUSINGTHIS APPLICATION.INSTALLINGTHEPROGRAMINDICATESYOURACCEPTANCEOFTHESE TERMSANDCONDITIONS. CLICKHERETOREADTHETERMSANDCONDITIONS Aceticacid Acrylonitrile Alkylbenzene Alphaolefins(2) Ammonia(7) Aniline Aromatics Aromaticsextraction Aromaticsextractivedistillation(3) Aromaticsrecovery Benzene(2) BisphenolA BTXaromatics(4) Butadieneextraction Butadiene,1,3-(2) Butanediol,1,4-(2) Butene-1 Butyraldehyde,nandi Cumene(3) Cyclohexane Di-methylether(DME) Dimethylterephthalate Dimethylformamide EDC(2) Ethanolamines Ethers Ethers—MTBE Ethylacetate Ethylbenzene(3) Ethylene(7) Ethylenefeed Ethyleneglycol(3) Ethyleneoxide(3) Ethyleneoxide/Ethyleneglycols Formaldehyde(2) Hydrogen Maleicanhydride Methanol(7) Methylamines Mixedxylenes(5) m-Xylene Octenes Olefins(5) Paraffin,normal(2) Paraxylene(6) Paraxylenecrystallization Phenol(3) Phthalicanhydride Polyalkyleneterephthalates Polycaproamide Polyesters Polyethylene(8) Polypropylene(7) Polystyrene(4) Propylene(7) PVC(suspension)(2) Pyrolysisgasoline Styrene(3) Styreneacrylonitrile Terephthalicacid UpgradingsteamcrackerC3cuts UpgradingsteamcrackerC4cuts Urea(2) Urea-formaldehyde VCMbythermalcrackingofEDC VCMremoval Wetairoxidation Xyleneisomerization(3) Processesindex PremierSponsor: ABBLummusGlobal AkerKvaerner Axens AxensNA BadgerLicensingLLC BasellPolyolefins BASFAG BP BPChemicals CDTECH ChemicalResearch&Licensing ChissoCorp. ChiyodaCorp. DavyProcessTechnology ExxonMobilChemical ExxonMobilChemicalTechnologyLicensingLLC GEPlastics GTCTechnology HaldorTopsøeA/S Hydro IllaInternational JapanPolypropyleneCorp. JohnsonMattheyCatalysts JohnsonMattheyPLC KelloggBrown&Root,Inc. LindeAG LonzaGroup LurgiAG LyondellChemicalCo. MitsubishiChemicalCorp. MitsuiChemicalsInc. NipponPetrochemicalsCo.,Ltd. NiroProcessTechnologyB.V. NOVAChemicals(International)S.A. NovolenTechnologyHoldingsC.V. OneSynergy SABIC ScientificDesignCompany,Inc. ShellInternationalChemicalsB.V. Sinopec(ResearchInstituteofPetroleumProcessing) StamicarbonBV Stone&WebsterInc. Sud-ChemieInc. Sunoco Technip TheDowChemicalCo. ToyoEngineeringCorp. UhdeGmbH UhdeInventa-Fischer UnionCarbideCorp. UnivationTechnologies UOPLLC Vinnolit Companyindex PremierSponsor: Processes Axens Axens is a refining, petrochemical and naturalgasmarketfocusedsupplierofprocesstech- nology, catalysts, adsorbents and services, backed bynearly50yearsofcommercialsuccess.Axensisa worldleaderinseveralareas,suchas: •Petroleumhydrotreating&hydroconversion •FCCgasolinedesulfurization •CatalyticReforming •BTX (benzene, toluene, xylenes) production & purification •SelectiveHydrogenationofolefincuts •Sulfurrecoverycatalysts. Axensisafully-ownedsubsidiaryofIFP. Alphaolefins Aromaticsrecovery Benzene BTXaromatics Butene-1 Cyclohexane Ethylenefeed Mixedxylenes Octenes Paraxylene Paraxylene Propylene Pyrolysisgasoline UpgradingsteamcrackerC3cuts UpgradingsteamcrackerC4cuts Xyleneisomerization Acetic acid Application:Toproduceaceticacidusingtheprocess,ACETICA.Metha- nolandcarbonmonoxide(CO)arereactedwiththecarbonylationreac- tionusingaheterogeneousRhcatalyst. Description:Freshmethanolissplitintotwostreamsandiscontacted withreactoroffgasinthehigh-pressureabsorber(7)andlightgases inthelow-pressureabsorber(8).Themethanol,exitingtheabsorbers, are recombined and mixed with the recycle liquid from the recycle- surge drum (6). This stream is charged to a unique bubble-column reactor(1). Carbonmonoxideiscompressedandspargedintothereactorriser. Thereactorhasnomechanicalmovingparts,andisfreefromleakage/ maintenance problems. The ACETICA Catalyst is an immobilized Rh- complexcatalystonsolidsupport,whichoffershigheractivityandop- eratesunderlesswaterconditionsinthesystemduetoheterogeneous system,andtherefore,thesystemhasmuchlesscorrosivity. Reactoreffluentliquidiswithdrawnandflash-vaporizedintheFlash- er(2).Thevaporizedcrudeaceticacidissenttothedehydrationcolumn (3)toremovewaterandanylightgases.Driedaceticacidisroutedto thefinishingcolumn(4),whereheavybyproductsareremovedinthe bottomdrawoff.Thefinishedacetic-acidproductistreatedtoremove traceiodidecomponentsattheiodideremovalunit(5). Vaporstreams from the dehydration column overhead contacted withmethanolinthelow-pressureabsorber(8).UnconvertedCO,meth- ane,otherlightbyproductsexitinginthevaporoutletsofthehigh-and low-pressureabsorbersandheavybyproductsfromthefinishingcolumn aresenttotheincineratorwithscrubber(9). Feedandutilityconsumption: Methanol,mt/mt 0.539 CO,mt/mt 0.517 Power(@COSupply0K/G),kWh/mt 129 Water,cooling,m 3 /mt 137 Steam@100psig,mt/mt 1.7 Commercial plant:OneunitisunderconstructionforaChineseclient. Reference:“AceticAcidProcessCatalyzedbyIonicallyImmobilizedRho- diumComplextoSolidResinSupport,”JournalofChemicalEngineering ofJapan,Vol.37,4,pp.536–545(2004) “The Chiyoda/UOPACETICA processfor theproductionof acetic acid,”8thAnnualSaudi-JapaneseSymposiumonCatalystsinPetroleum Refiningand Petrochemicals, KFUPM-RI, Dhahran, SaudiArabia, Nov. 29–30,1998. Licensor:ChiyodaCorp. Acrylonitrile Application:Aprocesstoproducehigh-purityacrylonitrileandhigh-pu- rity hydrogencyanide from propylene,ammonia andair. Recovery of byproductacetonitrileisoptional. Description:Propylene,ammonia,andairarefedtoafluidizedbedre- actortoproduceacrylonitrile(ACRN)usingDuPont’sproprietarycatalyst system.Otherusefulproductsfromthereactionarehydrogencyanide (HCN)andacetonitrile(ACE).Thereactionishighlyexothermicandheat is recovered from the reactor by producing high-pressure steam. The reactoreffluentisquenchedandneutralizedwithasulfuricsolutionto removetheexcessammonia. The product gas from the quench is absorbed with water to recovertheACRN,HCN,andACE.TheaqueoussolutionofACRN, HCN, and ACE is then fractionated and purified into high-quality products.Theproducts’recoveryandpurificationisahighlyefficient and low-energy consumption process. This ACRN technology minimizestheamountofaqueouseffluent,amajorconsiderationfor allacrylonitrileproducers. ThisACRNtechnologyisbasedonahigh-activity,high-throughput catalyst. The propylene conversion is 99% with a selectivity of 85% tousefulproductsofACRN,HCN,andACE.TheDuPontcatalystisa mechanicallysuperiorcatalyst,resultinginalowcatalystloss.DuPont has developed a Catalyst Bed Management Program (CBMP) to maintainthepropertiesofthecatalystbedinsidethereactoratoptimal performance throughout the operation. The catalyst properties, the CBMPandproprietaryreactorinternalsprovideanoptimalperformance oftheACRNreactor,resultinginhighyields. Withover30yearsofoperatingexperience,DuPonthasdeveloped know-how to increase the onstream factor of the plant. This know- howincludestheeffectiveuseofinhibitorstoreducetheformationof cyanideandnitrilepolymersandeffectiveapplicationofanantifoulant systemtoincreaseonstreamtimeforequipment. Commercial plants: DuPont Chemical Solution Enterprise, Beaumont, Texas(200,000mtpy). Licensor:KelloggBrown&Root,Inc. Alkylbenzene, linear Application:TheDetalprocessusesasolid,heterogeneouscatalystto produce linear alkylbenzene (LAB) by alkylating benzene with linear olefinsmadebythePacolprocess. Description:LinearparaffinsarefedtoaPacolreactor(1)todehydro- genate the feed into corresponding linear olefins. Reactor effluent is separatedintogasandliquidphasesinaseparator(2).Diolefinsinthe separator liquidareselectively converted tomono-olefinsin a DeFine reactor(3).Lightendsareremovedinastripper(4)andtheresulting olefin-paraffinmixtureissenttoaDetalreactor(5)wheretheolefinsare alkylatedwithbenzene.Thereactoreffluentissenttoafractionation section(6,7)for separationandrecycleofunreactedbenzenetothe Detalreactor,andseparationandrecycleofunreactedparaffinstothe Pacolreactor.Areruncolumn(8)separatestheLABproductfromthe heavyalkylatebottomsstream. FeedstockistypicallyC 10 toC 13 normalparaffinsof98+%purity. LABproducthasatypicalBromineIndexoflessthan10. Yields:Basedon100weightpartsofLAB,81partsoflinearparaffins and34partsofbenzenearechargedtoaUOPLABplant. Economics:Investment,USGulfCoastinsidebatterylimitsforthepro- ductionof80,000tpyofLAB:$1,000/tpy. Commercial plants:Twenty-nineUOPLABcomplexesbasedonthePa- colprocesshavebeenbuilt.FouroftheseplantsusetheDetalprocess. Reference: Greer,D., etal., “Advancesin the Manufacture of Linear Alkylbenzene,”6thWorldSurfactantsConference(CESIO),Berlin,Ger- many,June2004. Licensor:UOPLLC. Alpha olefins, linear Application:Toproducehigh-purityalphaolefins(C 4 –C 10 )suitableas copolymersforLLDPEproductionandasprecursorsforplasticizeralco- holsandpolyalphaolefinsusingtheAlphaSelectprocess. Description:Polymer-gradeethyleneisoligomerizedintheliquid-phase reactor(1)withacatalyst/solventsystemdesignedforhighactivityand selectivity.Liquideffluentandspentcatalystarethenseparated(2);the liquidisdistilled(3)forrecyclingunreactedethylenetothereactor,then fractionated(4)intohigh-purityalpha-olefins.Spentcatalystistreatedto removevolatilehydrocarbonsandrecovered.Thetablebelowillustrates thesuperiorpuritiesattainable(wt%)withtheAlpha-Selectprocess: n-Butene-1 >99 n-Hexene-1 >98 n-Octene-1 >96 n-Decene-1 >92 The process is simple;it operates at mild operatingtemperatures andpressuresandonlycarbonsteelequipmentisrequired.Thecatalyst isnontoxicandeasilyhandled. Yields:Yieldsareadjustabletomeetmarketrequirementsandverylittle highboilingpolymerisproducedasillustrated: Alpha-olefinproductdistribution,wt% n-Butene-1 33–43 n-Hexene-1 30–32 n-Octene-1 17–21 n-Decene-1 9–14 Economics:Typicalcasefora2004ISBLinvestmentataGulfCoastloca- tionproducing65,000tpyofC 4 –C 10 alpha-olefinsis: Investment,millionUS$ 37 Rawmaterial Ethylene,tonspertonofproduct 1.15 Byproducts,ton/tonofmainproducts C 12 + olefins 0.1 Fuelgas 0.03 Heavyends 0.02 Utilitiescost,US$/tonproduct 51 Catalyst+chemicals,US$/tonproduct 32 Commercial plants:TheAlphaSelectprocessisstronglybackedbyexten- siveAxensindustrialexperienceinhomogeneouscatalysis,inparticular, theAlphabutolprocessforproducingbutene-1forwhichthereare19 unitsproducing312,000tpy. Licensor:Axens,AxensNA. Alpha olefins Application:The-Sablinprocessproduces-olefinssuchasbutene-1, hexane-1, octene-1 decene-1, etc. from ethylene in a homogenous catalyticreaction.Theprocessisbasedonahighlyactivebifunctional catalystsystemoperatingatmildreactionconditionswithhighestselec- tivitiesto-olefins. Description:Ethyleneiscompressed(6)andintroducedtoabubble-col- umntypereactor(1)in whichahomogenouscatalystsystemisintro- ducedtogetherwithasolvent.Thegaseousproductsleavingthereactor overheadarecooledinacooler(2)andcooledinagas-liquidseparator forreflux(3)andfurthercooled(4)andseparatedinasecondgas-liquid separator(5). Unreactedethylenefromtheseparator(5)isrecycledviaacom- pressor(6)andaheatexchanger(7)togetherwithethylenemakeup tothereactor.Aliquidstreamiswithdrawnfromthereactor(1)con- tainingliquid-olefinsandcatalyst,whichisremovedbythecatalyst removalunit(8).Theliquidstreamfromthecatalystremovalunit(8) is combined with the liquid stream from the primary separation (5). These combinedliquidstreamsareroutedtoaseparationsectionin which,viaaseriesofcolumns(9),the-olefinsareseparatedintothe individualcomponents. Byvaryingthecatalystcomponentsratio,theproductmixturecan beadjustedfromlightproducts(butene-1,hexene-1,octene-1,decene- 1)toheavierproducts(C 12 toC 20 -olefins).Typicalyieldforlightolefins isover85wt%withhighpuritiesthatallowtypicalproductapplications. Thelightproductsshowexcellentpropertiesascomonomersinethylene polymerization. Economics:Duetothemildreactionconditions(pressureandtempera- ture), the process is lower in investment than competitive processes. Typicalutilityrequirementsfora160,000-metrictpyplantare3,700tph coolingwater,39MWfuelgasand6800kWelectricpower. Commercial plants:Oneplantof150,000metrictpycapacityiscurrently underconstructionforJubailUnitedinAl-Jubail,SaudiArabia. Licensor:ThetechnologyisjointlylicensedbyLindeAGandSABIC. Ammonia Application:Toproduceammoniafromavarietyofhydrocarbonfeed- stocksrangingfromnaturalgastoheavynaphthausingTopsøe’slow- energyammoniatechnology. Description:Naturalgasoranotherhydrocarbonfeedstockiscompressed (ifrequired),desulfurized,mixed withsteam andthen convertedinto synthesisgas.Thereformingsectioncomprisesaprereformer(optional, butgivesparticularbenefitswhenthefeedstockishigherhydrocarbons ornaphtha),afiredtubularreformerandasecondaryreformer,where processairisadded.TheamountofairisadjustedtoobtainanH 2 /N 2 ratioof3.0asrequiredbytheammoniasynthesisreaction.Thetubular steamreformerisTopsøe’sproprietaryside-wall-fireddesign.Afterthe reformingsection,thesynthesisgasundergoeshigh-andlow-tempera- tureshiftconversion,carbondioxideremovalandmethanation. Synthesis gas is compressed to the synthesis pressure, typically rangingfrom140 to220kg/cm 2 gand convertedintoammonia ina synthesis loop using radial flow synthesis converters, either the two- bedS-200,thethree-bedS-300,ortheS-250conceptusinganS-200 converter followed by a boiler or steam superheater, and a one-bed S-50 converter. Ammonia product is condensed and separated by refrigeration.Thisprocesslayoutisflexible,andeachammoniaplantwill beoptimizedforthelocalconditionsbyadjustmentofvariousprocess parameters. Topsøe supplies all catalysts used in the catalytic process stepsforammoniaproduction. Features, such as the inclusion of a prereformer, installation of a ring-typeburnerwithnozzlesforthesecondaryreformerandupgrading to an S-300ammonia converter, are all features that can be applied forexistingammoniaplants.Thesefeatureswilleasemaintenanceand improveplantefficiency. Commercial plants:Morethan60plantsusetheTopsøeprocesscon- cept.Since1990,50%ofthenewammoniaproductioncapacityhas been based on the Topsøe technology. Capacities of the plants con- structedwithinthelastdecaderangefrom650mtpdupto2,050mtpd being the world’s largest ammonia plant. Design of new plants with evenhighercapacitiesareavailable. Licensor:HaldorTopsøeA/S. [...]... thermalstabilityandasuitableboilingpoint Morethan55Morphylaneplants(totalcapacity ofmorethan6MMtpy) Emmrich, G., F. Ennenbach and U. Ranke, “Krupp Uhde Processes forAromaticsRecovery,”European Petrochemical Technology Conference,June21–22,1999,London Emmrich,G.,U.RankeandH.Gehrke,“Workingwithanextractivedistillationprocess,” ,Summer2001,p.125 *Maximumcontentofnonaromatics**Includingbenzene/toluenesplitter... circulatingsolventisprocessedinasolvent-regenerationsteptoremove heavydecompositionproducts,whicharepurgeddaily The process advantages over conventional liquid-liquid extraction processes include lower capital and operating costs and simplicity of operation.Advantagesoverotherextractive processes include:superior solventsystem,fewerequipmentpieces,smallequipmentandexpanded feedstock range. Design fl exibility... to–33°C(16)forstorage.UtilityunitsintheLACplantarethepowergenerationsystem(17),whichprovidespowerfortheplantfromHP superheated steam, BFW purifi cation unit (18) and the refrigeration unit(19) Simplifi cationoverconventional processes givesimportant savings such as: investment, catalyst-replacement costs, maintenance costs, etc. Total feed requirement (process feed plus fuel) is approximately 7 Gcal/metric... EnergyconsumptionofKBR’sKAAP processislessthan25MM Btu(LHV)/short-ton.Eliminationoftheprimaryreformercombinedwith low-pressuresynthesisprovidesacapitalcostsavingsofabout10%over conventional processes. Over 200 large-scale, single-train ammonia plants of KBR design are onstream or have been contracted worldwide. The KAAP advancedammoniatechnologyprovidesalow-cost,low-en-... Meanwhile, the solvent is returned to the extractorandtheprocessrepeatsitself :Overallaromatics’recoveriesare>99%whilesolventlossesare extremelysmall,lessthan0.006lb/bbloffeed For 2005 USGulfCoastlocation: Over20licensedunitsareinoperation Axens,AxensNA Toproducehigh-puritybenzeneandheavieraromaticsfrom tolueneandheavieraromaticsusingtheDetolprocess... Benzeneyieldsareclosetothetheoretical,owingtoseveraltechniquesusedsuchasproprietaryreactordesign,heavyaromatic(diphenyl)recycleandmulti-pointhydrogenquench Basis:USGulfCoast 2005: Thirty-fi veplantshavebeenlicensedworldwidefor processingavarietyoffeedstocksincludingtoluene,mixedaromatics, reformateandpyrolysisgasoline Axens,AxensNA TheBadgerBPAtechnologyisusedtoproducehigh-purity... includingsevenplantsinoperationandfourunderdesign Axens,AxensNA An aromatics process based on extractive distillation, GTBTXeffi cientlyrecoversbenzene,tolueneandxylenesfromrefi neryor petrochemical aromaticsstreams,suchascatalyticreformateorpyrolysis gasoline Hydrocarbonfeedispreheatedwithhotcirculatingsolvent and fed at a midpoint into the extractive distillation... cooled by generating high-pressure steam(4).Theshiftreactioniscarriedoutintwocatalyticsteps—hightemperature(5)andlow-temperatureshift(6).Carbondioxideremoval (7)useslicensed processes. FollowingCO2removal,residualcarbonoxides areconvertedtomethaneinthemethanator(8).Methanatoreffl uentis cooled,andwaterisseparated(9)beforetherawgasisdried(10).