Free LATEX (Đề thi có 4 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng A[.]
Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi Câu [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a B 2a A C a D a Câu Hàm số y = x + có giá trị cực đại x A −1 B C D −2 Câu Khối đa diện loại {5; 3} có tên gọi gì? A Khối bát diện B Khối tứ diện C Khối 12 mặt D Khối 20 mặt Câu [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 5a a 8a 2a B C D A 9 9 Câu Cho khối chóp S ABC√ có đáy ABC tam giác cạnh a Hai mặt bên (S AB) (S AC) vng góc Thể tích khối chóp S ABC√là √ √ với đáy S C = a 3.3 √ a a a3 2a3 A B C D 12 Câu Khối đa diện loại {3; 3} có tên gọi gì? A Khối bát diện B Khối 12 mặt C Khối lập phương Câu [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C Vô nghiệm D Khối tứ diện D Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim+ f (x) = f (a) lim− f (x) = f (b) B lim+ f (x) = f (a) lim+ f (x) = f (b) x→a x→b x→a x→b C lim− f (x) = f (a) lim+ f (x) = f (b) x→a x→b x→a x→b D lim− f (x) = f (a) lim− f (x) = f (b) Câu Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A Cả ba câu sai B F(x) = G(x) khoảng (a; b) C G(x) = F(x) − C khoảng (a; b), với C số D F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số Câu 10 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a B C D a A a 3 Câu 11 Tìm m để hàm số y = mx3 + 3x2 + 12x + đạt cực đại x = A m = B m = −2 C m = −3 D m = −1 Câu 12 Bát diện thuộc loại A {3; 4} B {3; 3} D {5; 3} C {4; 3} Trang 1/4 Mã đề Câu 13 Câu 14 A A 1 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n B C 2 Khối đa diện loại {3; 5} có số cạnh B 20 C 30 ! D +∞ D 12 [ = 60◦ , S O Câu 15 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a.√Khoảng cách từ O đến (S √ BC) √ √ 2a 57 a 57 a 57 A a 57 B C D 19 17 19 Câu 16 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b C D A B 2 Câu 17 [2-c] Giá trị nhỏ hàm số y = x2 ln x đoạn [e−1 ; e] 1 B − C −e D − A − e e 2e p ln x Câu 18 Gọi F(x) nguyên hàm hàm y = ln2 x + mà F(1) = Giá trị F (e) là: x 8 A B C D 3 π π Câu 19 Cho hàm số y = sin x − sin x Giá trị lớn hàm số khoảng − ; 2 A −1 B C D Câu 20 Mỗi đỉnh hình đa diện đỉnh chung A Ba cạnh B Bốn cạnh C Năm cạnh D Hai cạnh Câu 21 Tứ diện thuộc loại A {5; 3} B {4; 3} D {3; 4} C {3; 3} Câu 22 Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ A lim [ f (x)g(x)] = ab x→+∞ C lim [ f (x) − g(x)] = a − b x→+∞ B lim [ f (x) + g(x)] = a + b x→+∞ f (x) a = D lim x→+∞ g(x) b √ x2 + 3x + x→−∞ 4x − 1 B − Câu 23 Tính giới hạn lim A C D Câu 24 [2] Cho hàm số f (x) = x ln2 x Giá trị f (e) A B 2e + C D 2e e a Câu 25 [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = + , với a, b ∈ Z Giá trị a + b b ln A B C D Câu 26 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) − g(x)]dx = A Z B [ f (x) + g(x)]dx = g(x)dx, với f (x), g(x) liên tục R f (x)dx − Z f (x)dx + Z g(x)dx, với f (x), g(x) liên tục R Trang 2/4 Mã đề Z f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z D k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R C Câu 27 [2] Cho hàm số y = ln(2x + 1) Tìm m để y0 (e) = 2m + 1 + 2e − 2e + 2e − 2e B m = C m = D m = A m = 4e + − 2e − 2e 4e + Câu 28 [2]√Tìm m để giá trị nhỏ hàm số y = 2x3 + (m2 + 1)2 x [0; 1] 2√ A m = ± B m = ±3 C m = ±1 D m = ± Câu 29 Cho hình chữ nhật ABCD, cạnh AB = 4, AD = Gọi M, N trung điểm cạnh AB CD Cho hình chữ nhật quay quanh MN ta hình trụ trịn xoay tích A V = 4π B 8π C 16π D 32π Câu 30 Tập xác định hàm số f (x) = −x3 + 3x2 − A (1; 2) B [−1; 2) C [1; 2] D (−∞; +∞) Câu 31 Cho hình chóp S ABCD √ có đáy ABCD hình vuông cạnh a Hai mặt phẳng (S AB) (S AD) vng góc với đáy, S C = a Thể tích khối chóp S ABCD √ √ a a3 a3 C B a D A 3 √ Câu 32 [2] Thiết diện qua trục hình nón trịn xoay tam giác có diện tích a2 Thể tích khối nón √ √ √ √ cho πa3 πa3 πa3 πa3 B V = C V = D V = A V = 6 x−1 Câu 33 [3-1214d] Cho hàm số y = có đồ thị (C) Gọi I giao điểm hai tiệm cận (C) Xét x+2 tam giác B thuộc (C), đoạn thẳng AB có độ dài √ ABI có hai đỉnh A, √ √ A B C D 2 √ Câu 34 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 58 3a a 38 3a 38 B C D A 29 29 29 29 log(mx) Câu 35 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m > B m < C m < ∨ m = D m ≤ Câu 36 Cho hình chóp S ABCD có cạnh đáy 2a Mặt bên hình chóp tạo với đáy góc 60◦ Mặt phẳng (P) chứa cạnh AB qua trọng tâm G tam giác S AC cắt S C, S D M, n Thể tích khối √ chóp S ABMN √ √ √ 5a 2a3 4a3 a3 A B C D 3 mx − Câu 37 Tìm m để hàm số y = đạt giá trị lớn [−2; 6] x+m A 67 B 34 C 45 D 26 Câu 38 Hình chóp tứ giác có mặt phẳng đối xứng? A mặt B mặt C mặt Câu 39 [1] Cho a > 0, a , Giá trị biểu thức a A 25 B log √a C D mặt √ D Trang 3/4 Mã đề Câu 40 Phần thực√và phần ảo số √ phức z = A Phần thực 2, √ phần ảo − √ C Phần thực − 2, phần ảo − √ √ − − 3i √l √ B Phần thực √2 − 1, phần ảo √ D Phần thực − 1, phần ảo − - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 C D C D D B B A C 11 10 B 12 A C 13 D 16 17 D 18 A B 21 22 C B 24 A 25 B 26 27 A D D 28 30 D 31 A 32 D 33 36 D 20 A 23 34 C 14 15 19 B B C B 35 D 37 40 39 A C B D ... − 1, phần ảo √ D Phần thực − 1, phần ảo − - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 C D C D D B B A C 11 10 B 12 A C 13 D 16 17 D 18 ... 19 17 19 Câu 16 [12 218 d] Cho a > 0, b > thỏa mãn log3a+2b +1 (9a2 + b2 + 1) + log6ab +1 (3a + 2b + 1) = Giá trị a + 2b C D A B 2 Câu 17 [2-c] Giá trị nhỏ hàm số y = x2 ln x đoạn [e? ?1 ; e] 1. ..Câu 13 Câu 14 A A 1 [3 -11 31d] Tính lim + + ··· + 1+ 2 + + ··· + n B C 2 Khối đa diện loại {3; 5} có số cạnh B 20 C 30 ! D +∞ D 12 [ = 60◦ , S O Câu 15 [3] Cho hình chóp S