1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Kỳ thi tốt nghiệp THPT năm 2003-2003 - ĐỀ thi môn toán

4 1,4K 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 150,5 KB

Nội dung

Kỳ thi tốt nghiệp THPT năm 2003-2003 - ĐỀ thi môn toán

bộ giáo dục và đào tạo -------------------- kỳ thi tốt nghiệp trung học phổ thông năm học 2002 2003 ------------------- hớng dẫn chấm Đề chính thức môn toán * Bản hớng dẫn chấm thi này có 4 trang * I. Các chú ý khi chấm thi 1) Hớng dẫn chấm thi (HDCT) này nêu biểu điểm chấm thi tơng ứng với đáp án nêu dới đây. 2) Nếu thí sinh có cách giải đúng, cách giải khác với đáp án, thì ngời chấm cho điểm theo số điểm qui định dành cho câu ( hay phần ) đó. 3) Việc vận dụng HDCT chi tiết tới 0,25 điểm phải thống nhất trong tất cả các tổ chấm thi môn Toán của Hội đồng. 4) Sau khi cộng điểm toàn bài mới làm tròn điểm môn thi theo qui định chung. II. Đáp án và cách cho điểm Bài 1 (3 điểm). 1. (2, 5 điểm) - Tập xác định R \ { 2}. (0, 25 điểm)- Sự biến thiên: a) Chiều biến thiên: 212+=xxy, y ' = 22)2(34+xxx, ===310'xxy y< 0 với ( ) ( ) ;31;x: hàm số nghịch biến trên các khoảng( )( )+ ;3,1;. y > 0 với ()2;1x(2; 3): hàm số đồng biến trên các khoảng (1; 2), (2; 3). (0, 75 điểm)b) Cực trị: Hàm số có hai cực trị: cực tiểu yCT = y(1) = 2 , cực đại yCĐ = y(3) = - 2. (0, 25 điểm)c) Giới hạn: .25422lim2lim,25422lim2lim =++=++=+=xxxxyxxxxxyx Đồ thị có tiệm cận đứng x = - 2. 0)21(lim)]2([lim ==+xxxyx. Đồ thị có tiệm cận xiên y = - x + 2. (0, 25 điểm) (0, 25 điểm) d) Bảng biến thiên: (0, 25 điểm)- Đồ thị: x + 321 y - 0 + + 0 - y + + - 2 CĐ CT 2 - - - Hớng dẫn chấm thi TNTHPT năm 2003: đề chính thức 2 (0, 50 điểm) 2. ( 0, 5 điểm) 21622+++=mxmmxy, đồ thị có tiệm cận đứng là x = 2 khi và chỉ khi=yx 2lim =+21622limmxmmx. Qua giới hạn có 2 + m 2 = 0 hay m = 0. Với m = 0 ta có 2122542+=+=xxxxxy; nên đồ thị hàm số có tiệm cận xiên là y = - x +2. Vậy giá trị cần tìm của m là m = 0. (0, 25 điểm) (0, 25 điểm)Bài 2 (2 điểm ) 1. (1 điểm) 2223)1(21)1(133)(++=+++=xxxxxxxf;12222)1(13233Cxxxdxxxxx++++=+++ Vì 31)1( =Fnên613=C. Do đó 613122)(2+++=xxxxF. (0, 75 điểm) (0, 25 điểm)2. ( 1 điểm) Diện tích hình phẳng S cần tìm +++++===61612612)216214(2121020212102dxxxdxxxxdxxxxS (0, 25 điểm) Vẽ đúng dạng đồ thị : + Giao với Oy: tại điểm (0; 2,5) + Đồ thị có tâm đối xứng tại điểm ( 2 ; 0). + Đồ thị có hai tiệm cận: x = 2 và y = - x + 2. Giải phơng trình: 2121022+xxx= 0 ta tìm đợc các cận lấy tích phân là: - 1 và 6. Hớng dẫn chấm thi TNTHPT năm 2003: đề chính thức 3.8ln1663)2ln1614(612=+=xxx (0, 75 điểm) Bài 3 (1, 5 điểm) 1. (1 điểm). Giả sử điểm M ở góc phần t thứ nhất và M = (x; y). Khi đó theo đầu bài ta có các hệ thức: các bán kính qua tiêu 1MF= a + ex = 15, 2MF= a - ex = 9, khoảng cách giữa các đờng chuẩn: 2 . ea = 36. Vậy a = 12, e = 32, x = 29. Vì c = a.e = 8 và có b2= a2- c2= 80 nên phơng trình chính tắc của elíp (E) là 18021442=+yx (0, 75 điểm) (0, 25 điểm)2. (0, 5 điểm). Tiếp tuyến với elíp (E) tại điểm M(29; 2115) là 3211 =+ yx. Trên elíp (E) còn 3 điểm có toạ độ là (- 29; 2115), (29; - 2115), (- 29; - 2115) cũng có các bán kính qua tiêu là 9 và 15. Do đó ta còn có 3 phơng trình tiếp tuyến với elíp (E) tại các điểm (tơng ứng) đó là : -3211 =+ yx, 3211 = yx, 3211 =+ yx (0, 25 điểm) (0, 25 điểm) Bài 4 (2, 5 điểm) 1. (1 điểm) Theo đầu bài ta có A= (2; 4; -1), B = (1; 4; -1), C = (2; 4; 3), D = (2; 2; -1). Do đó: ADABADABADACADACACABACAB=++==++==++=00.0)2.(00).1(.00.4)2.(00.0.04.00.00).1(. Thể tích khối tứ diện ABCD tính theo công thức VABCD =ADACAB].,[61= 34 (do )0;4;0(],[=ACAB) (0, 75 điểm) (0,2 5 điểm)2. (0, 75 điểm) Đờng thẳng CD nằm trên mặt phẳng (ACD) mà mặt phẳng (ACD) AB nên đờng vuông góc chung của AB và CD là đờng thẳng qua A và vuông góc với CD. Vậy đờng thẳng có vectơ chỉ phơng )1;2;0(],[21==CDABu và phơng trình tham số là: +===tztyx1242 (0, 50 điểm) Mặt phẳng (ABD) có vectơ pháp tuyến [=nAB,AD] = (0; 0; 2). Vậy góc nhọn giữa và mặt phẳng (ABD) xác định bởi biểu thức: Hớng dẫn chấm thi TNTHPT năm 2003: đề chính thức 4sin = unun 555221)2(.21.2)2.(00.0222==+++= (0, 25 điểm) 3. (0, 75 điểm) Phơng trình mặt cầu (S) có dạng: 0222222=++++++ dczbyaxzyx Bốn điểm A, B, C, D nằm trên mặt cầu nên có toạ độ thoả mãn phơng trình trên. Do đó các hệ số a, b, c, d là nghiệm của hệ phơng trình sau: =+++=++++=+++=+++)(02449)(068429)(028218)(028421SDdcbaSCdcbaSBdcbaSAdcba Giải hệ này có a = 23, b = -3, c = - 1, d = 7. Do đó phơng trình mặt cầu (S) là: 07263222=+++ zyxzyx. (0, 50 điểm) Mặt cầu (S) có tâm K = (23; 3; 1) và bán kính R = 221; phơng trình của mặt phẳng (ABD) là: z + 1 = 0. Phơng trình mặt phẳng song song với mặt phẳng (ABD) có dạng z + d = 0. Mặt phẳng đó là tiếp diện của mặt cầu (S) khi và chỉ khi khoảng cách từ tâm K đến mặt phẳng đó bằng R: 22212,222112212120201.1+===+++ddd. Vậy có hai tiếp diện của mặt cầu (S) cần tìm là: (1): z + 2221 = 0 (2): z 2221+ = 0 (0, 25 điểm) Bài 5 (1 điểm). Hệ thức 2:5:61:1:1=++CyxCyxCyxvới x và y là các số nguyên dơng mà 2 y+1 x cho hệ phơng trình sau: =++=+21yxC6y1xC51yxC6y1xC Giải hệ: ===++=+++=+++=++38261)1(51)1)((61)!1()!1(2!)!1(!6)!1()!1()!1(5!)!1(!6)!1(1yxyxyyxyxxyxyxyxyxyxyxyxyx (0, 50 điểm) (0, 50 điểm)--------- HếT --------- . đào tạo -- -- - -- - -- - -- - -- - -- - kỳ thi tốt nghiệp trung học phổ thông năm học 2002 2003 -- -- - -- - -- - -- - -- - -- hớng dẫn chấm Đề chính thức môn toán * Bản. ===++=+++=+++=++38261)1(51)1)((61)!1()!1(2!)!1(!6)!1()!1()!1(5!)!1(!6)!1(1yxyxyyxyxxyxyxyxyxyxyxyxyx (0, 50 điểm) (0, 50 điểm )-- -- - -- - - HếT -- -- - -- - -

Ngày đăng: 03/09/2012, 14:56

HÌNH ẢNH LIÊN QUAN

d) Bảng biến thiên:          - Kỳ thi tốt nghiệp THPT năm 2003-2003 - ĐỀ thi môn toán
d Bảng biến thiên: (Trang 1)

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w