Tài liệu Free pdf LATEX (Đề thi có 4 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [3 1131d] Tính lim ( 1 1 + 1 1 + 2 + + 1 1 + 2 + + n )[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi 1 1 Câu [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A +∞ B C ! D Câu √[2] Cho hình lâp phương√ABCD.A0 B0C D0 cạnh a √ Khoảng cách từ C đến AC√0 a a a a B C D A Câu [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc mơn Tốn Mơn thi hình thức trắc nghiệm 50 câu, câu có phương án trả lời, có phương án Mỗi câu trả lời cộng 0, điểm, câu trả lời sai bị trừ 0, điểm Bạn An học mơn Tốn nên định chọn ngẫu nhiên hết 50 câu trả lời Xác suất để bạn An đạt điểm mơn Tốn C 20 (3)30 C 40 (3)10 C 20 (3)20 C 10 (3)40 A 50 50 B 50 50 C 50 50 D 50 50 4 4 Câu Cho hình chóp S ABCD có đáy ABCD hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy góc 45◦ AB = 3a, BC = 4a Thể √ tích khối chóp S ABCD 10a C 10a3 D 20a3 A 40a3 B n−1 Câu Tính lim n +2 A B C D x x−3 x−2 x−1 + + + y = |x + 2| − x − m (m tham Câu [4-1213d] Cho hai hàm số y = x−2 x−1 x x+1 số thực) có đồ thị (C1 ) (C2 ) Tập hợp tất giá trị m để (C1 ) cắt (C2 ) điểm phân biệt A (2; +∞) B (−∞; 2) C [2; +∞) D (−∞; 2] √ Câu Cho khối chóp tam giác S ABC có cạnh đáy a Góc cạnh bên mặt phẳng đáy 300 Thể theo a √ √ √ tích khối chóp S ABC3 √ a a3 a3 a B C D A 18 36 x+1 Câu Tính lim x→+∞ 4x + 1 A B C D Câu Hàm số f có nguyên hàm K A f (x) xác định K C f (x) có giá trị nhỏ K B f (x) có giá trị lớn K D f (x) liên tục K Câu 10 Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) (S AC) vng góc với (S BC) √ Thể tích khối chóp S 3.ABC √ √ √ a3 a a3 a3 A B C D 12 12 un Câu 11 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B +∞ C −∞ D Trang 1/4 Mã đề 7n2 − 2n3 + Câu 12 Tính lim 3n + 2n2 + B C A - 3 Z ln(x + 1) Câu 13 Cho dx = a ln + b ln 3, (a, b ∈ Q) Tính P = a + 4b x2 A B C √ Câu 14 [1] Biết log6 a = log6 a A 108 B C D D −3 D 36 ! x3 −3mx2 +m Câu 15 [2] Tìm tất giá trị thực tham số m để hàm số f (x) = nghịch biến π khoảng (−∞; +∞) A m = B m ∈ R C m ∈ (0; +∞) D m , Câu 16 Cho hình chóp S ABCD có đáy ABCD hình thang vng A D; AD = CD = a; AB = 2a; tam giác√S AB nằm mặt phẳng vuông góc với (ABCD) Thể tích khối chóp √ S ABCD √ 3 √ a a a A B a3 C D 2 Câu 17 Phát biểu sau sai? A lim qn = với |q| > B lim un = c (Với un = c số) 1 D lim k = với k > C lim √ = n n Câu 18 [2] Tổng nghiệm phương trình 6.4 x − 13.6 x + 6.9 x = A B C D Câu 19 Cho hình chóp S ABCD có đáy ABCD hình thoi với AC = 2BD = 2a tam giác S AD vuông cân S√, (S AD) ⊥ (ABCD) Thể√tích khối chóp S ABCD là√ √ a3 a3 a3 a3 B C D A 12 12 Câu 20 Dãy !n số sau có giới !n hạn 0? !n !n 5 A − B C D 3 e Câu 21 [2] Cho hàm số f (x) = ln(x4 + 1) Giá trị f (1) A B C 2 2n − Câu 22 Tính lim 2n + 3n + A B +∞ C D ln D −∞ Câu 23 Cho lăng trụ ABC.A0 B0C có cạnh đáy a Cạnh bên 2a Thể tích khối lăng trụ ABC.A0 B0C √ √ a3 a3 a3 3 A a B C D Câu 24 Cho hàm số y = |3 cos x − sin x + 8| với x ∈ [0; 2π] Gọi M, m giá trị lớn nhất, giá trị nhỏ hàm số Khi tổng √ √M + m √ A 16 B C D Câu 25 Cho hình chóp S ABCD √ có đáy ABCD hình vng cạnh a Hai mặt phẳng (S AB) (S AD) vng góc với đáy, S C = a √3 Thể tích khối chóp S ABCD √ a3 a3 a3 3 A B C a D Trang 2/4 Mã đề Câu 26 Tìm giá trị lớn của√hàm số y = A B √ √ x + + −√x C + √ D Câu 27 Trong không gian, cho tam giác ABC có đỉnh B, C thuộc trục Ox Gọi E(6; 4; 0), F(1; 2; 0) hình chiếu B, C lên cạnh! AC, AB Tọa độ hình chiếu ! A lên BC ! A (2; 0; 0) B ; 0; C ; 0; D ; 0; 3 Câu 28 [2] Tổng nghiệm phương trình x − 12.3 x + 27 = A 27 B 10 C D 12 Câu 29 Điểm cực đại đồ thị hàm số y = 2x3 − 3x2 − A (0; −2) B (1; −3) C (−1; −7) D (2; 2) π Câu 30 Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại điểm x = , x = π Tính giá √ trị biểu thức T = a + b √ √ C T = D T = A T = B T = 3 + Câu 31 Khối đa diện loại {3; 5} có số đỉnh A 12 B 20 C D 30 Câu 32 Khối đa diện loại {3; 4} có số mặt A B 10 C 12 D Câu 33 [2-c] Giá trị nhỏ hàm số y = (x2 − 2)e2x đoạn [−1; 2] A −2e2 B −e2 C 2e2 D 2e4 Câu 34 Tập số x thỏa mãn log0,4 (x − 4) + ≥ A (4; 6, 5] B [6, 5; +∞) C (4; +∞) Câu 35 [1] Cho a > 0, a , Giá trị biểu thức alog A 25 B √ a D (−∞; 6, 5) √ C D π Câu 36 [2-c] Giá trị lớn hàm số y = e x cos x đoạn 0; √ √ π π4 π6 e e A e B C 2 D Câu 37 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≥ B m < C m ≤ D m > 4 4 Câu 38 [2-c] Giá trị lớn hàm số y = x(2 − ln x) đoạn [2; 3] A B − ln C e D −2 + ln Câu 39 Dãy! số có giới hạn 0? n n3 − 3n A un = B un = n+1 !n −2 C un = D un = n2 − 4n 2 sin x Câu 40 + 2cos x √ √ [3-c] Giá trị nhỏ giá trị lớn hàm số f (x) √ =2 A 2 B C 2 D Câu 41 ! định sau sai? Z Các khẳng A Z C f (x)dx = f (x) Z k f (x)dx = k f (x)dx, k số Z B Z D f (x)dx = F(x) + C ⇒ Z f (t)dt = F(t) + C f (x)dx = F(x) +C ⇒ Z f (u)dx = F(u) +C Trang 3/4 Mã đề [ = 60◦ , S A ⊥ (ABCD) Câu 42 Cho hình chóp S ABCD có đáy ABCD hình thoi cạnh a góc BAD Biết rằng√ khoảng cách từ A đến cạnh √chóp S ABCD √ S C a Thể tích khối 3 √ a a a A B C D a3 12 Câu 43 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 13 B log2 2020 C 2020 D log2 13 Câu 44 Cho số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = Tìm giá trị nhỏ P = xy + x + 2y + 17 A −12 B −9 C −5 D −15 x=t Câu 45 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : y = −1 hai mặt phẳng (P), (Q) z = −t có phương trình x + 2y + 2z + = 0, x + 2y + 2z + = Viết phương trình mặt cầu (S ) có tâm I thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) (Q) 9 B (x + 3)2 + (y + 1)2 + (z − 3)2 = A (x − 3)2 + (y − 1)2 + (z − 3)2 = 4 9 2 2 2 C (x + 3) + (y + 1) + (z + 3) = D (x − 3) + (y + 1) + (z + 3) = 4 √ Câu 46 √ Xác định phần ảo số phức z = ( + 3i) √ A B −7 C −6 D Câu 47 Nhị thập diện (20 mặt đều) thuộc loại A {3; 4} B {3; 5} C {5; 3} D {4; 3} Câu 48 đề sai? Z Z Cho hàm sốZf (x), g(x) liên tục R Trong cácZmệnh đề sau, mệnh Z A k f (x)dx = f f (x)dx, k ∈ R, k , B ( f (x) − g(x))dx = f (x)dx − g(x)dx Z Z Z Z Z Z C f (x)g(x)dx = f (x)dx g(x)dx D ( f (x) + g(x))dx = f (x)dx + g(x)dx Câu 49 [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% năm Biết khơng rút tiền khỏi ngân hàng sau năm số tiền lãi nhập vào só tiền vốn để tính lãi cho năm Hỏi sau năm người thu (cả số tiền gửi ban đầu lãi) gấp đôi số tiền gửi ban đầu, giả định khoảng thời gian lãi suất không thay đổi người khơng rút tiền ra? A 14 năm B 10 năm C 11 năm D 12 năm Câu 50 [2] Tổng nghiệm phương trình log4 (3.2 x − 1) = x − A B C D - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 B D 10 11 D 12 A 13 D 14 15 A 16 17 A 18 19 C 20 21 C 22 A B 26 27 C B C D B B 28 29 A 30 A 31 A 32 B C D 34 A 35 A 36 37 C 38 39 C 40 A 41 D 42 A 43 D 44 A 45 D 46 A 49 D 24 A 25 A 47 C A 33 D A 23 C C B B 48 C 50 A B C C ... x = A B C D Câu 19 Cho hình chóp S ABCD có đáy ABCD hình thoi với AC = 2BD = 2a tam giác S AD vuông cân S√, (S AD) ⊥ (ABCD) Thể√tích khối chóp S ABCD là√ √ a3 a3 a3 a3 B C D A 12 12 Câu 20... 12 = Tìm giá trị nhỏ P = xy + x + 2y + 17 A −12 B −9 C −5 D −15 x=t Câu 45 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : y = −1 hai mặt phẳng (P), (Q) z = −t... (cả số tiền gửi ban đầu lãi) gấp đôi số tiền gửi ban đầu, giả định khoảng thời gian lãi suất không thay đổi người khơng rút tiền ra? A 14 năm B 10 năm C 11 năm D 12 năm Câu 50 [2] Tổng nghiệm