1. Trang chủ
  2. » Tất cả

Đề ôn thi môn toán lớp 12 (45)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 115,96 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính lim x→1 x3 − 1 x − 1 A −∞ B +∞ C 3 D 0 Câu 2 Tính[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Tính lim x→1 B +∞ √ x2 + 3x + Tính giới hạn lim x→−∞ 4x − 1 B − √ √ 4n + − n + Tính lim 2n − B A −∞ Câu A Câu A x3 − x−1 x+2 bằng? x→2 x A B 2n + Câu Tính giới hạn lim 3n + 2 A B 2x + Câu Tính giới hạn lim x→+∞ x + 1 A −1 B 4x + Câu [1] Tính lim bằng? x→−∞ x + A −4 B −1 C D C D C D +∞ Câu Tính lim C D D C D C D C Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim− f (x) = f (a) lim− f (x) = f (b) B lim− f (x) = f (a) lim+ f (x) = f (b) x→a x→b x→a x→b C lim+ f (x) = f (a) lim+ f (x) = f (b) x→a x→b x→a x→b D lim+ f (x) = f (a) lim− f (x) = f (b) x−3 bằng? x→3 x + A B C +∞ D −∞ x − 12x + 35 Câu 10 Tính lim x→5 25 − 5x 2 A +∞ B − C −∞ D 5 x−3 x−2 x−3 x−2 Câu 11 [12212d] Số nghiệm phương trình − 2.2 − 3.3 + = A Vô nghiệm B C D Câu [1] Tính lim Câu 12 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m < B m > C m ≤ D m ≥ Câu 13 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (1; 3; 2) B (2; 4; 3) C (2; 4; 6) D (2; 4; 4) Trang 1/5 Mã đề Câu 14 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m > B m < C m ≤ D m ≥ 4 4 Câu 15 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A Vô nghiệm B C √ √ D − 3m + = có nghiệm C ≤ m ≤ D < m ≤ 4 − xy Câu 17 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 − 19 11 − 18 11 − 29 11 + 19 B Pmin = C Pmin = D Pmin = A Pmin = 9 21 √ Câu 18 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 62 B Vô số C 64 D 63 Câu 16 [12215d] Tìm m để phương trình x+ A m ≥ B ≤ m ≤ 1−x2 − 4.2 x+ 1−x2 Câu 19 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b C D A B 2 q Câu 20 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 2] B m ∈ [0; 1] C m ∈ [−1; 0] D m ∈ [0; 4] Câu 21 Tính lim 2n2 − 3n6 + n4 A B C D Câu 22 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B Câu 23 [3-1133d] Tính lim A Câu 24 Tính lim A Câu 25 Tính lim A n−1 n2 + n+3 C D 12 + 22 + · · · + n2 n3 B +∞ C D B C D B C D Trang 2/5 Mã đề Câu 26 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un B Nếu lim un C Nếu lim un D Nếu lim un ! un = −∞ = a < lim = > với n lim ! un = a > lim = lim = +∞ ! un = a , lim = ±∞ lim = = +∞ lim = a > lim(un ) = +∞ ! 3n + 2 + a − 4a = Tổng phần tử Câu 27 Gọi S tập hợp tham số nguyên a thỏa mãn lim n+2 S A B C D cos n + sin n Câu 28 Tính lim n2 + A B C +∞ D −∞ + + ··· + n Mệnh đề sau đúng? Câu 29 [3-1132d] Cho dãy số (un ) với un = n2 + 1 B lim un = A lim un = C Dãy số un khơng có giới hạn n → +∞ D lim un = Câu 30 Phát biểu sau sai? A lim un = c (Với un = c số) C lim qn = với |q| > 1 = với k > nk D lim √ = n B lim Câu 31 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 5a 8a 2a a B C D A 9 9 Câu 32 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ √ √ √ thẳng BD abc b2 + c2 c a2 + b2 b a2 + c2 a b2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 33 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab 1 ab A B √ C √ D √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 34 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a A B a C a D Câu 35 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C) (A0C D) √ √ √ √ 2a a a A a B C D 0 0 Câu 36.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D 2 Trang 3/5 Mã đề [ = 60◦ , S O Câu 37 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ √ với mặt đáy S O = a √ Khoảng cách từ A đến (S BC) √ 2a 57 a 57 a 57 D A B C a 57 17 19 19 d = 120◦ Câu 38 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 3a B 2a C 4a D Câu 39 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab 1 ab B C D A √ √ √ a + b2 a2 + b2 a2 + b2 a2 + b2 d = 30◦ , biết S BC tam giác Câu 40 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 13 16 26 Câu 41 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A Cả ba mệnh đề B (I) (II) C (I) (III) D (II) (III) Câu 42 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z B Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z C Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Câu 43 Z Trong khẳng định sau, khẳng định sai? Z dx = ln |x| + C, C số B 0dx = C, C số A Z x Z xα+1 C xα dx = + C, C số D dx = x + C, C số α+1 Câu 44 f (x), g(x) liên đề sai? Z Z Cho hàm số Z Z tục R Trong cácZmệnh đề sau, mệnh Z A f (x)g(x)dx = f (x)dx g(x)dx B ( f (x) − g(x))dx = f (x)dx − g(x)dx Z Z Z Z Z C k f (x)dx = f f (x)dx, k ∈ R, k , D ( f (x) + g(x))dx = f (x)dx + g(x)dx Câu 45 Z Các khẳng định Z sau sai? A Z C k f (x)dx = k f (x)dx, k số !0 f (x)dx = f (x) Z B Z D f (x)dx = F(x) +C ⇒ Z f (u)dx = F(u) +C f (x)dx = F(x) + C ⇒ Z f (t)dt = F(t) + C Trang 4/5 Mã đề Câu 46 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 47 Trong khẳng định sau, khẳng định sai? A Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số B Cả ba đáp án C F(x) = x2 nguyên hàm hàm số f (x) = 2x √ D F(x) = x nguyên hàm hàm số f (x) = x Câu 48 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (I) sai B Câu (III) sai C Khơng có câu D Câu (II) sai sai Câu 49 khẳng định sau, khẳng định sai? Z Trong u0 (x) dx = log |u(x)| + C A u(x) B Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số C F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x D F(x) = − cos x nguyên hàm hàm số f (x) = sin x Câu 50 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai sai B Chỉ có (II) C Cả hai D Chỉ có (I) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 B A B A D D 10 D D C D A 11 C 12 13 C 14 D 15 C 17 19 16 20 21 24 A 25 A 26 B 30 31 C C D 37 34 D 36 D 38 D 39 B 40 A 41 B 42 43 C 32 A B 35 47 D 28 A C 29 A 45 C 22 D 23 A 33 B 18 A B 27 C D 44 A C 46 B D D 48 49 A 50 C B ... (I) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 B A B A D D 10 D D C D A 11 C 12 13 C 14 D 15 C 17 19 16 20 21 24 A 25 A 26 B 30 31 C C D... 24 Tính lim A Câu 25 Tính lim A n−1 n2 + n+3 C D 12 + 22 + · · · + n2 n3 B +∞ C D B C D B C D Trang 2/5 Mã đề Câu 26 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un B Nếu lim un C Nếu lim un D... hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A Cả ba mệnh đề B (I) (II) C (I) (III)

Ngày đăng: 10/03/2023, 23:54

w