Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính lim x→−∞ x + 1 6x − 2 bằng A 1 2 B 1 C 1 6 D 1 3[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi x+1 Câu Tính lim x→−∞ 6x − A B − 2n bằng? Câu [1] Tính lim 3n + A − B x+1 Câu Tính lim x→+∞ 4x + A B 4x + bằng? Câu [1] Tính lim x→−∞ x + A −1 B −4 C D C D C D C D Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim f (x) = f (a) B lim+ f (x) = lim− f (x) = +∞ x→a C f (x) có giới hạn hữu hạn x → a Câu Dãy số có giới hạn 0? n3 − 3n B un = n2 − 4n A un = n+1 x→a x→a x→a x→a D lim+ f (x) = lim− f (x) = a !n C un = !n −2 D un = x+2 bằng? x→2 x A B C D 2 x −9 Câu Tính lim x→3 x − A B C −3 D +∞ x−3 Câu [1] Tính lim bằng? x→3 x + A −∞ B +∞ C D √ √ 4n2 + − n + Câu 10 Tính lim 2n − 3 C D +∞ A B Câu 11 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x + A xy0 = −ey − B xy0 = ey − C xy0 = ey + D xy0 = −ey + Câu Tính lim Câu 12 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≤ B m < C m > D m ≥ √ Câu 13 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị nhỏ biểu thức P = x + 2y thuộc tập " đây? ! " ! 5 A (1; 2) B [3; 4) C 2; D ;3 2 Trang 1/5 Mã đề Câu 14 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B Vô nghiệm C D √ √ − 3m + = có nghiệm C ≤ m ≤ D ≤ m ≤ 4 log(mx) Câu 16 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m ≤ B m < ∨ m = C m < ∨ m > D m < Câu 15 [12215d] Tìm m để phương trình x+ B m ≥ A < m ≤ 1−x2 − 4.2 x+ 1−x2 Câu 17 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C D Vơ nghiệm Câu 18 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 3) B (2; 4; 6) C (2; 4; 4) D (1; 3; 2) Câu 19 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 √ Câu 20 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 64 B 63 C Vô số D 62 + + ··· + n Mệnh đề sau đúng? Câu 21 [3-1132d] Cho dãy số (un ) với un = n2 + 1 A lim un = B lim un = C lim un = D Dãy số un khơng có giới hạn n → +∞ Câu 22 Tính lim A Câu 23 Tính lim A Câu 24 Tính lim A n−1 n2 + B 1 + + ··· + 1.2 2.3 n(n + 1) C D 3 D ! B 7n2 − 2n3 + 3n3 + 2n2 + B Câu 25 Dãy số sau có giới hạn khác 0? sin n A B n n C C - C D n+1 n 1 + ··· + Câu 26 [3-1131d] Tính lim + 1+2 + + ··· + n A B C 2 Câu 27 Tính lim n+3 A B C D √ n ! D +∞ D Trang 2/5 Mã đề Câu 28 Phát biểu sau sai? A lim qn = với |q| > 1 B lim √ = n = với k > D lim un = c (Với un = c số) nk Câu 29 Trong khẳng định có khẳng định đúng? C lim (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D 12 + 22 + · · · + n2 Câu 30 [3-1133d] Tính lim n3 A B C +∞ D 3 d = 120◦ Câu 31 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 3a B 4a C D 2a Câu 32 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B C D a 6 0 0 Câu 33 [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab B D √ A √ C √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 34 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường√thẳng BD0 √ √ √ abc b2 + c2 a b2 + c2 b a2 + c2 c a2 + b2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 0 0 Câu 35.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D [ = 60◦ , S O Câu 36 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ O đến (S √ BC) √ 2a 57 a 57 a 57 A B C D a 57 19 19 17 3a Câu 37 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a 2a a A B C D 3 0 0 Câu 38 [3] Cho hình lập phương ABCD.A B C D có cạnh a Khoảng cách hai mặt phẳng (AB0C) (A0C D) √ √ √ √ 2a a a A a B C D 2 Trang 3/5 Mã đề √ Câu 39 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 38 3a 58 a 38 3a A B C D 29 29 29 29 Câu 40 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a C D a A a B Câu 41 Trong khẳng định sau, khẳng định sai? A Cả ba đáp án √ B F(x) = x nguyên hàm hàm số f (x) = x C F(x) = x2 nguyên hàm hàm số f (x) = 2x D Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số Câu 42 Mệnh đề sau sai? Z A Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C B Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) !0 Z C f (x)dx = f (x) D F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) Câu 43 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (I) B Cả hai câu C Chỉ có (II) D Cả hai câu sai Câu 44 khẳng định sau, khẳng định sai? Z Trong u0 (x) dx = log |u(x)| + C A u(x) B F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x C Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số D F(x) = − cos x nguyên hàm hàm số f (x) = sin x Câu 45 Z Trong khẳng định sau, khẳng định sai? Z 0dx = C, C số A Z C xα dx = xα+1 + C, C số α+1 dx = ln |x| + C, C số Z x D dx = x + C, C số B Câu 46 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z B Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Trang 4/5 Mã đề Z D Nếu f (x)dx = Z g(x)dx f (x) = g(x), ∀x ∈ R Câu 47 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số B Cả ba câu sai C G(x) = F(x) − C khoảng (a; b), với C số D F(x) = G(x) khoảng (a; b) Câu 48 Z Các khẳng định Z sau sai? A Z C k f (x)dx = k f (x)dx, k số !0 f (x)dx = f (x) Câu 49 Hàm số f có nguyên hàm K A f (x) có giá trị lớn K C f (x) liên tục K Z B Z D f (x)dx = F(x) +C ⇒ Z f (u)dx = F(u) +C f (x)dx = F(x) + C ⇒ Z f (t)dt = F(t) + C B f (x) xác định K D f (x) có giá trị nhỏ K Câu 50 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai sai B Chỉ có (I) C Chỉ có (II) D Cả hai - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A C D D A D C 11 C B 10 A B 12 D D 13 D 14 15 D 16 B 17 A 18 B 19 A 20 21 B D 22 A 23 A 24 C 25 26 27 D 28 A 29 D 30 A 31 C C B 32 A 33 A 34 B B 35 C 36 37 C 38 39 B 40 41 B 42 43 B 44 A 45 C 46 47 C 48 49 C 50 D C D D B C ... hai - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A C D D A D C 11 C B 10 A B 12 D D 13 D 14 15 D 16 B 17 A 18 B 19 A 20 21 B D 22 A 23 A... m > D m < Câu 15 [122 15d] Tìm m để phương trình x+ B m ≥ A < m ≤ 1−x2 − 4.2 x+ 1−x2 Câu 17 [122 11d] Số nghiệm phương trình 12. 3 x + 3.15 x − x = 20 A B C D Vô nghiệm Câu 18 [122 7d] Tìm ba số...Câu 14 [122 12d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B Vô nghiệm C D √ √ − 3m + = có nghiệm C ≤ m ≤ D ≤ m ≤ 4 log(mx) Câu 16 [122 6d] Tìm tham số thực m