1. Trang chủ
  2. » Tất cả

Đề ôn thi môn toán lớp 12 (331)

6 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 116,36 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [1] Tính lim x→3 x − 3 x + 3 bằng? A −∞ B 0 C +∞ D 1 C[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi x−3 Câu [1] Tính lim bằng? x→3 x + A −∞ B C +∞ D Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 B Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim+ f (x) = lim− f (x) = a B f (x) có giới hạn hữu hạn x → a x→a x→a C lim+ f (x) = lim− f (x) = +∞ D lim f (x) = f (a) x→a x→a x→a 1−n bằng? Câu [1] Tính lim 2n + 1 A − B x − 12x + 35 Câu Tính lim x→5 25 − 5x A −∞ B − 2n + Câu Tìm giới hạn lim n+1 A B √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − A B √ √ 4n2 + − n + Câu Tính lim 2n − A B Câu Giá trị lim (3x2 − 2x + 1) x→1 A +∞ B C D C D +∞ C D C D − C D +∞ C D Câu 10 Phát biểu sau sai? A lim k = n C lim qn = (|q| > 1) B lim un = c (un = c số) D lim = n Câu 11 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Câu 12 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≥ B m ≤ C m < D m > Trang 1/5 Mã đề √ Câu 13 [12215d] Tìm m để phương trình x+ 3 B < m ≤ A ≤ m ≤ 4 1−x2 √ − 4.2 x+ 1−x2 − 3m + = có nghiệm C m ≥ D ≤ m ≤ √ Câu 14 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị nhỏ biểu thức P = x + 2y thuộc tập ! " ! " đây? 5 D ;3 A (1; 2) B [3; 4) C 2; 2 √ Câu 15 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 64 B Vô số C 63 D 62 − xy = 3xy + x + 2y − Tìm giá trị nhỏ Câu 16 [12210d] Xét số thực dương x, y thỏa mãn log3 x + 2y Pmin P = x√+ y √ √ √ 11 − 11 − 19 18 11 − 29 11 + 19 A Pmin = B Pmin = C Pmin = D Pmin = 21 log 2x Câu 17 [1229d] Đạo hàm hàm số y = x2 − ln 2x 1 − ln 2x − log 2x A y0 = B y0 = C y0 = D y0 = 2x ln 10 2x ln 10 x ln 10 x3 Câu 18 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 2020 B 13 C log2 13 D 2020 q Câu 19 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 4] B m ∈ [−1; 0] C m ∈ [0; 1] D m ∈ [0; 2] Câu 20 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B Vô nghiệm C D Câu 21 Tính lim A n+3 B C D ! 3n + 2 Câu 22 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D ! 1 + ··· + Câu 23 [3-1131d] Tính lim + 1+2 + + ··· + n A B C +∞ D 2 ! 1 Câu 24 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C D Câu 25 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < Trang 2/5 Mã đề (III) lim qn = +∞ |q| > A B Câu 26 Dãy số sau có giới hạn 0? n2 − n2 − 3n A un = B u = n 5n − 3n2 n2 C C un = D n2 + n + (n + 1)2 D un = − 2n 5n + n2 Câu 27 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un B Nếu lim un C Nếu lim un D Nếu lim un ! un = a < lim = > với n lim = −∞ ! un = a > lim = lim = +∞ ! un = a , lim = ±∞ lim = = +∞ lim = a > lim(un ) = +∞ Câu 28 Dãy số sau có giới hạn khác 0? sin n B √ A n n C n+1 n Câu 29 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim D n un D −∞ B +∞ C 7n2 − 2n3 + Câu 30 Tính lim 3n + 2n2 + B C D A - 3 Câu 31 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A a B C D d = 120◦ Câu 32 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a D 2a A 3a B 4a C Câu 33 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường√thẳng BD0 √ √ √ abc b2 + c2 b a2 + c2 a b2 + c2 c a2 + b2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 A Câu 34 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C) (A0C D) √ √ √ √ 2a a a A a B C D 2 Câu 35 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B C D a 6 0 0 Câu 36 [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC 1 ab ab A √ B √ C √ D a + b2 a2 + b2 a2 + b2 a2 + b2 Trang 3/5 Mã đề Câu 37 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a B D A a C a 0 0 Câu 38.√ [2] Cho hình lâp phương √ √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC a a a a B C D A [ = 60◦ , S O Câu 39 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ O đến (S√BC) √ a 57 a 57 2a 57 A B C D a 57 19 17 19 d = 30◦ , biết S BC tam giác Câu 40 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 26 16 13 Câu 41 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) B Với x ∈ (a; b), ta có f (x) = F(x) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 42 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z B Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z C Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Câu 43 Z Các khẳng định sau Z sai? A Z C f (x)dx = F(x) + C ⇒ !0 f (x)dx = f (x) f (t)dt = F(t) + C B Câu 44 Hàm số f có nguyên hàm K A f (x) liên tục K C f (x) xác định K Z Z D k f (x)dx = k Z f (x)dx, k số Z f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C B f (x) có giá trị lớn K D f (x) có giá trị nhỏ K Câu 45 Trong khẳng định sau, khẳng định sai? A Z F(x) = − cos x nguyên hàm hàm số f (x) = sin x u0 (x) B dx = log |u(x)| + C u(x) C F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x D Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Câu 46 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn Trang 4/5 Mã đề (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (I) B Cả hai sai C Cả hai D Chỉ có (II) Câu 47 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (I) B Cả hai câu C Cả hai câu sai D Chỉ có (II) Câu 48 Z [1233d-2] Mệnh đề sau sai? f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z B k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R C Z Z Z D [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R A Câu 49 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 50 Trong khẳng định sau, khẳng định sai?√ A F(x) = x nguyên hàm hàm số f (x) = x B Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số C Cả ba đáp án D F(x) = x2 nguyên hàm hàm số f (x) = 2x - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 B D A D D 10 C 11 B C 12 A D 14 13 A 15 D 17 19 D C C 16 A C 18 20 B 21 D B B B 24 25 B 26 27 B 28 C D 22 23 29 C D C 30 A 31 A 32 33 C 34 C 35 A D 36 37 D C 38 A 39 A 40 D 41 A 42 D 43 D 44 A 45 B 46 47 B 48 49 B 50 A D B ... (x) = 2x - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 B D A D D 10 C 11 B C 12 A D 14 13 A 15 D 17 19 D C C 16 A C 18 20 B 21 D B B B 24 25... Mã đề (III) lim qn = +∞ |q| > A B Câu 26 Dãy số sau có giới hạn 0? n2 − n2 − 3n A un = B u = n 5n − 3n2 n2 C C un = D n2 + n + (n + 1)2 D un = − 2n 5n + n2 Câu 27 Trong mệnh đề đây, mệnh đề. .. ln 10 2x ln 10 x ln 10 x3 Câu 18 [122 21d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 2020 B 13 C log2 13 D 2020 q Câu 19 [122 16d] Tìm tất giá trị thực tham

Ngày đăng: 10/03/2023, 21:16

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w