1. Trang chủ
  2. » Tất cả

Đề ôn thi môn toán lớp 12 (233)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 115,61 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính giới hạn lim x→−∞ √ x2 + 3x + 5 4x − 1 A 1 B − 1[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi √ x2 + 3x + x→−∞ 4x − 1 A B − 2x + Câu Tính giới hạn lim x→+∞ x + A B −1 Câu Tính giới hạn lim 4x + Câu [1] Tính lim bằng? x→−∞ x + A −4 B 2 1−n Câu [1] Tính lim bằng? 2n + 1 A B − x −1 Câu Tính lim x→1 x − A −∞ B C D C D C −1 D C D C +∞ D C D C − D C D C D C D −∞ Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B − 2n bằng? Câu [1] Tính lim 3n + A B 3 2n + Câu Tìm giới hạn lim n+1 A B x+1 Câu Tính lim x→+∞ 4x + 1 A B x−3 Câu 10 [1] Tính lim bằng? x→3 x + A +∞ B Câu 11 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập " đây? ! 5 A (1; 2) B ;3 C 2; D [3; 4) 2 √ ab Câu 12 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≤ B m > C m < D m ≥ q Câu 13 [12216d] Tìm tất giá trị thực tham số m để phương trình log23 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 1] B m ∈ [0; 4] C m ∈ [0; 2] D m ∈ [−1; 0] Trang 1/5 Mã đề 1 Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = −e − B xy = e + C xy0 = ey − D xy0 = −ey + √ Câu 15 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 64 B 63 C Vô số D 62 Câu 14 [3-12217d] Cho hàm số y = ln Câu 16 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C Vơ nghiệm D Câu 17 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C D Vô số − xy = 3xy + x + 2y − Tìm giá trị nhỏ Câu 18 [12210d] Xét số thực dương x, y thỏa mãn log3 x + 2y Pmin P = x√+ y √ √ √ 11 − 19 11 − 18 11 − 29 11 + 19 A Pmin = B Pmin = C Pmin = D Pmin = 21 √ √ − 3m + = có nghiệm C ≤ m ≤ D m ≥ Câu 20 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D + + ··· + n Câu 21 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + A Dãy số un khơng có giới hạn n → +∞ B lim un = C lim un = D lim un = n−1 Câu 22 Tính lim n +2 A B C D Câu 19 [12215d] Tìm m để phương trình x+ 3 A < m ≤ B ≤ m ≤ 4 1−x2 − 4.2 x+ 1−x2 Câu 23 Trong mệnh đề đây, mệnh đề ! sai? un A Nếu lim un = a > lim = lim = +∞ ! un B Nếu lim un = a < lim = > với n lim = −∞ ! un C Nếu lim un = a , lim = ±∞ lim = D Nếu lim un = +∞ lim = a > lim(un ) = +∞ cos n + sin n n2 + B C ! 1 Câu 25 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B C +∞ 2 Câu 26 Trong khẳng định có khẳng định đúng? Câu 24 Tính lim A −∞ D +∞ D (I) lim nk = +∞ với k nguyên dương Trang 2/5 Mã đề (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A Câu 27 Tính lim A B C D 2n2 − 3n6 + n4 B Câu 28 Dãy số sau có giới hạn khác 0? n+1 B √ A n n 12 + 22 + · · · + n2 n3 B C D C n D sin n n C D Câu 29 [3-1133d] Tính lim A +∞ 1 + + ··· + Câu 30 Tính lim 1.2 2.3 n(n + 1) A B ! C D Câu 31 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 8a 5a a 2a B C D A 9 9 Câu 32 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab A √ B C D √ √ a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 33 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A 2a B C a D a Câu 34 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng 0 (AB0C) √ (A C D) √ √ √ 2a a a A B a C D 3a Câu 35 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a 2a a a A B C D 3 Câu 36 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab A √ B C D √ √ a + b2 a2 + b2 a2 + b2 a2 + b2 Trang 3/5 Mã đề √ Câu 37 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 3a 38 3a 58 a 38 A B C D 29 29 29 29 d = 30◦ , biết S BC tam giác Câu 38 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 13 26 16 0 0 Câu 39.√ [2] Cho hình lâp phương √ √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC a a a a A B C D 2 [ = 60◦ , S O Câu 40 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a.√Khoảng cách từ A đến (S √ BC) √ √ a 57 a 57 2a 57 C D A a 57 B 19 17 19 Câu 41 Hàm số f có nguyên hàm K A f (x) có giá trị lớn K C f (x) có giá trị nhỏ K B f (x) liên tục K D f (x) xác định K Câu 42 Z Trong khẳng định sau, khẳng định sai? Z 0dx = C, C số A Z C dx = ln |x| + C, C số x B Z D xα dx = xα+1 + C, C số α+1 dx = x + C, C số Câu 43 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B (I) (II) C Cả ba mệnh đề D (I) (III) Câu 44 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) B Với x ∈ (a; b), ta có f (x) = F(x) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 45 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A Cả ba câu sai B F(x) = G(x) khoảng (a; b) C F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số D G(x) = F(x) − C khoảng (a; b), với C số Trang 4/5 Mã đề Câu 46 Cho hai hàm y = f (x), y = g(x) Z có đạo hàm Z R Phát biểu sau đúng? A Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z B Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Câu 47 !0 sau sai? Z Mệnh đề A f (x)dx = f (x) B Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) C F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a;Zb) D Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C Câu 48 Trong khẳng định sau, khẳng định sai? A Z F(x) = − cos x nguyên hàm hàm số f (x) = sin x u0 (x) B dx = log |u(x)| + C u(x) C F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x D Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Câu 49 ! định sau sai? Z Các khẳng f (x)dx = f (x) A Z C Z B f (x)dx = F(x) +C ⇒ Z f (u)dx = F(u) +C D Z Z f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C Z k f (x)dx = k f (x)dx, k số Câu 50 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A B D B C B B C C B 10 11 B 12 D 13 D 14 15 D 16 B 18 B 17 19 C B 20 A 21 D 23 A 25 27 D 31 35 24 C 30 B C D 32 C 34 C D 36 B C 37 C 28 A C 33 22 26 A B 29 C 38 A 39 A 40 B B 41 B 42 43 B 44 A 45 D 46 B 47 C 48 B 49 C 50 B ... C D - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A B D B C B B C C B 10 11 B 12 D 13 D 14 15 D 16 B 18 B 17 19 C B 20 A 21 D 23 A 25 27 D... = n−1 Câu 22 Tính lim n +2 A B C D Câu 19 [122 15d] Tìm m để phương trình x+ 3 A < m ≤ B ≤ m ≤ 4 1−x2 − 4.2 x+ 1−x2 Câu 23 Trong mệnh đề đây, mệnh đề ! sai? un A Nếu lim un = a > lim = lim =... G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B (I) (II) C Cả ba mệnh đề D (I) (III)

Ngày đăng: 10/03/2023, 21:16

w