1. Trang chủ
  2. » Tất cả

Đề ôn thi môn toán lớp 12 (77)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 112,87 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính giới hạn lim x→−∞ √ x2 + 3x + 5 4x − 1 A − 1 4 B[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 A − B x3 − Câu Tính lim x→1 x − A B −∞ C D C D +∞ C D C D C −4 D C +∞ D C D C D D C D Câu Giá trị lim(2x2 − 3x + 1) x→1 A Câu A Câu A B +∞ 2n + Tìm giới hạn lim n+1 B 4x + [1] Tính lim bằng? x→−∞ x + B −1 Câu Giá trị lim (3x2 − 2x + 1) x→1 A B x+2 bằng? x→2 x A B 2−n Câu Giá trị giới hạn lim n+1 A −1 B − 2n Câu [1] Tính lim bằng? 3n + 1 A B − 3 x−2 Câu 10 Tính lim x→+∞ x + A −3 B − Câu Tính lim C √ Câu 11 [12215d] Tìm m để phương trình x+ A ≤ m ≤ B ≤ m ≤ 4 1−x2 √ − 4.2 x+ 1−x2 − 3m + = có nghiệm C m ≥ D < m ≤ Câu 12 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 2020 B log2 2020 C log2 13 D 13 Câu 13 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B Vô nghiệm C D Câu 14 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A Vô nghiệm B C D Trong khẳng định sau đây, khẳng định đúng? x + B xy0 = −ey + C xy0 = ey + D xy0 = −ey − Câu 15 [3-12217d] Cho hàm số y = ln A xy0 = ey − Trang 1/5 Mã đề log(mx) = có nghiệm thực log(x + 1) C m < ∨ m = D m < Câu 16 [1226d] Tìm tham số thực m để phương trình A m < ∨ m > B m ≤ Câu 17 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Câu 18 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B ≤ m ≤ C ≤ m ≤ D < m ≤ 1 − xy = 3xy + x + 2y − Tìm giá trị nhỏ Câu 19 [12210d] Xét số thực dương x, y thỏa mãn log3 x + 2y Pmin P = x√+ y √ √ √ 11 − 11 + 19 11 − 19 18 11 − 29 A Pmin = B Pmin = C Pmin = D Pmin = 9 21 Câu 20 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C Vô số D ! 3n + 2 Câu 21 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D 2 + + ··· + n Câu 22 [3-1133d] Tính lim n3 C +∞ D A B 3 7n − 2n + Câu 23 Tính lim 3n + 2n2 + D - A B C 3 un Câu 24 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A +∞ B C −∞ D n−1 Câu 25 Tính lim n +2 A B C D Câu 26 Dãy số sau có giới hạn khác 0? n+1 A B √ n n Câu 27 Tính lim n+3 A B C sin n n C D n D Câu 28 Trong mệnh đề đây, mệnh đề ! sai? un A Nếu lim un = a > lim = lim = +∞ ! un B Nếu lim un = a < lim = > với n lim = −∞ C Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un D Nếu lim un = a , lim = ±∞ lim = Trang 2/5 Mã đề Câu 29 Tính lim A cos n + sin n n2 + B +∞ Câu 30 Phát biểu sau sai? A lim √ = n n C lim q = với |q| > C D −∞ = với k > nk D lim un = c (Với un = c số) B lim 0 0 Câu 31.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a B C D A Câu 32 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A a B C D d = 30◦ , biết S BC tam giác Câu 33 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 16 13 26 [ = 60◦ , S O Câu 34 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ Khoảng cách từ A đến (S BC) √ với mặt đáy S O = a √ √ a 57 a 57 2a 57 B C a 57 A D 19 17 19 Câu 35 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a B C a D a A Câu 36 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C) (A0C D) √ √ √ √ a a 2a A a B C D Câu 37 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A a B C a D 2a Câu 38 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B C D a 6 [ = 60◦ , S O Câu 39 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ O đến (S BC) √ √ 2a 57 a 57 a 57 A B C a 57 D 19 19 17 Câu 40 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab 1 ab A √ B √ C √ D a + b2 a2 + b2 a2 + b2 a2 + b2 Trang 3/5 Mã đề Câu 41 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có f (x) = F(x) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ (a; b), ta có F (x) = f (x), ngồi F (a+ ) = f (a) F (b− ) = f (b) Câu 42 Z [1233d-2] Mệnh đề sau sai? f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z Z B [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z Z C k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z D [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R A Câu 43 Trong khẳng định sau, khẳng định sai? A Z F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x u0 (x) dx = log |u(x)| + C B u(x) C Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số D F(x) = − cos x nguyên hàm hàm số f (x) = sin x Câu 44 Cho hai hàm y = f (x), y = g(x) Z có đạo hàm Z R Phát biểu sau đúng? A Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z B Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Câu 45 Mệnh đề sau sai? A Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Z B Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C C F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) !0 Z f (x)dx = f (x) D Câu 46 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B Câu 47 Hàm số f có nguyên hàm K A f (x) có giá trị nhỏ K C f (x) có giá trị lớn K C D B f (x) liên tục K D f (x) xác định K Trang 4/5 Mã đề Câu 48 Z Các khẳng định sau Z sai? A Z C f (x)dx = F(x) + C ⇒ !0 f (x)dx = f (x) f (t)dt = F(t) + C B Z Z D k f (x)dx = k Z f (x)dx, k số Z f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C Câu 49 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (II) B Cả hai C Cả hai sai D Chỉ có (I) Câu 50 Trong khẳng định sau, khẳng định sai? A F(x) = x2 nguyên hàm hàm số f (x) = 2x √ B F(x) = x nguyên hàm hàm số f (x) = x C Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số D Cả ba đáp án - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A A D A D A B A 10 C 11 A 12 C 13 A 14 C 15 A 16 C B 17 18 A C 19 A 21 B 23 25 D 20 B 22 B 24 B D 26 A 27 A 28 A 29 C 30 C 31 B 32 A 33 B 34 35 B 36 C 38 C 37 39 C B 40 A 41 43 D 47 42 B 45 D 44 C C B 46 A 48 B 49 A 50 D B ... đáp án - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A A D A D A B A 10 C 11 A 12 C 13 A 14 C 15 A 16 C B 17 18 A C 19 A 21 B 23 25 D 20 B 22... [122 6d] Tìm tham số thực m để phương trình A m < ∨ m > B m ≤ Câu 17 [122 18d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Câu 18 [122 14d]... hạn khác 0? n+1 A B √ n n Câu 27 Tính lim n+3 A B C sin n n C D n D Câu 28 Trong mệnh đề đây, mệnh đề ! sai? un A Nếu lim un = a > lim = lim = +∞ ! un B Nếu lim un = a < lim = > với n lim

Ngày đăng: 10/03/2023, 21:09

w