Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Giả sử ta có lim x→+∞ f (x) = a và lim x→+∞ f (x) = b[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ A lim [ f (x) − g(x)] = a − b x→+∞ x→+∞ C lim [ f (x)g(x)] = ab B lim [ f (x) + g(x)] = a + b x→+∞ D lim x→+∞ x→+∞ √ √ 4n2 + − n + Câu Tính lim 2n − A Câu Tính lim x→3 A x2 − x−3 f (x) a = g(x) b B +∞ C B −3 C D +∞ C D x2 − 5x + x→2 x−2 A B −1 − 2n Câu [1] Tính lim bằng? 3n + A B − D Câu Tính giới hạn lim Câu !Dãy số sau có giới !hạn 0? n n 5 A B − 3 Câu [1] Tính lim A − n2 bằng? 2n2 + 1 B C D !n C e !n D C D − Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim+ f (x) = f (a) lim+ f (x) = f (b) B lim+ f (x) = f (a) lim− f (x) = f (b) x→a x→b x→a x→b C lim− f (x) = f (a) lim+ f (x) = f (b) 4x + bằng? x→−∞ x + B x→a x→b x→a x→b D lim− f (x) = f (a) lim− f (x) = f (b) Câu [1] Tính lim A −4 C −1 D C D Câu 10 Giá trị lim (3x2 − 2x + 1) A +∞ x→1 B Trong khẳng định sau đây, khẳng định đúng? x + B xy0 = −ey − C xy0 = ey + D xy0 = −ey + Câu 11 [3-12217d] Cho hàm số y = ln A xy0 = ey − Câu 12 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Trang 1/5 Mã đề Câu 13 [12213d] Có giá trị nguyên m để phương trình nhất? A B 3|x−1| C = 3m − có nghiệm D Câu 14 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C Vô nghiệm D Câu 15 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≥ B m < C m ≤ D m > Câu 16 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C Câu 17 [12214d] Với giá trị m phương trình A ≤ m ≤ 3|x−2| = m − có nghiệm C < m ≤ B ≤ m ≤ D Vô nghiệm D < m ≤ Câu 18 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (1; 3; 2) B (2; 4; 3) C (2; 4; 4) D (2; 4; 6) Câu 19 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 2020 B 13 C log2 13 D log2 2020 √ Câu 20 [12215d] Tìm m để phương trình x+ A ≤ m ≤ B m ≥ 12 + 22 + · · · + n2 Câu 21 [3-1133d] Tính lim n3 A B +∞ 1−x2 Câu 22 Dãy số sau có giới hạn khác 0? sin n B A n n Câu 23 Tính lim A n−1 n2 + B √ − 3m + = có nghiệm C < m ≤ D ≤ m ≤ 4 − 4.2 x+ 1−x2 C D C n+1 n D √ n C D Câu 24 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B Câu 25 Dãy số sau có giới hạn 0? n2 − 3n − 2n A un = B un = n 5n + n2 C C un = D n2 − 5n − 3n2 Câu 26 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B +∞ C D un = n2 + n + (n + 1)2 un D −∞ Trang 2/5 Mã đề Câu 27 Phát biểu sau sai? A lim k = với k > n C lim un = c (Với un = c số) B lim √ = n D lim qn = với |q| > Câu 28 Trong mệnh đề đây, mệnh đề ! sai? un A Nếu lim un = a > lim = lim = +∞ ! un B Nếu lim un = a < lim = > với n lim = −∞ ! un C Nếu lim un = a , lim = ±∞ lim = D Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! 1 + + ··· + Câu 29 Tính lim 1.2 2.3 n(n + 1) B C D A ! 1 + ··· + Câu 30 [3-1131d] Tính lim + 1+2 + + ··· + n A B +∞ C D 2 0 0 Câu 31.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a B C D A [ = 60◦ , S O Câu 32 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a Khoảng cách từ O đến (S√BC) √ √ a 57 a 57 2a 57 A B a 57 D C 19 19 17 [ = 60◦ , S O Câu 33 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ BC) √ √ với mặt đáy S O = a Khoảng cách từ A đến (S √ a 57 2a 57 a 57 B a 57 C D A 17 19 19 √ Câu 34 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vuông góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 38 3a a 38 3a 58 A B C D 29 29 29 29 d = 30◦ , biết S BC tam giác Câu 35 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 26 16 13 Câu 36 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A a B 2a C D a 0 0 Câu 37 [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab A √ B C D √ √ a + b2 a2 + b2 a2 + b2 a2 + b2 Trang 3/5 Mã đề Câu 38 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ √ √ √ thẳng BD abc b2 + c2 a b2 + c2 b a2 + c2 c a2 + b2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 39 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 5a 8a a 2a A B C D 9 9 Câu 40 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ 2a a a B C a A D 2 Câu 41 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A Cả ba mệnh đề B (I) (III) C (I) (II) D (II) (III) Câu 42 đề sau sai? Z [1233d-2] Mệnh Z A k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z B [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z Z Z C [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z D f (x)dx = f (x) + C, với f (x) có đạo hàm R Câu 43 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề sai? ( f (x) + g(x))dx = A Z C ( f (x) − g(x))dx = f (x)dx + Z g(x)dx f (x)dx − k f (x)dx = f B Z Z g(x)dx Câu 44 Hàm số f có nguyên hàm K A f (x) có giá trị lớn K C f (x) liên tục K D f (x)g(x)dx = Z f (x)dx, k ∈ R, k , Z f (x)dx g(x)dx B f (x) xác định K D f (x) có giá trị nhỏ K Câu 45 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Trang 4/5 Mã đề Câu 46 Mệnh đề sau sai? A F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a;Zb) B Nếu F(x) nguyên hàm f (x) (a; b) C số !0 Z C f (x)dx = f (x) f (x)dx = F(x) + C D Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Câu 47 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu sai B Chỉ có (I) C Cả hai câu D Chỉ có (II) Câu 48 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 49 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số B Cả ba câu sai C G(x) = F(x) − C khoảng (a; b), với C số D F(x) = G(x) khoảng (a; b) Câu 50 Trong khẳng định sau, khẳng định sai? A Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số B Z F(x) = − cos x nguyên hàm hàm số f (x) = sin x u0 (x) dx = log |u(x)| + C C u(x) D F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 D A A D B 11 A D 13 C 12 C 18 D 19 C 20 A 21 C 22 23 C 24 A 26 B 27 D 29 C 30 D 32 A 33 D 34 C 35 C C C D 36 A D 37 D 28 A 31 41 B 16 A 17 39 B 10 14 15 A 25 D B B 38 C 40 A B 42 A C 43 D 44 45 A C 46 A 47 C 48 A 49 C 50 C ... tan2 x - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 D A A D B 11 A D 13 C 12 C 18 D 19 C 20 A 21 C 22 23 C 24 A 26 B 27 D 29 C 30 D 32 A... Câu 16 [122 11d] Số nghiệm phương trình 12. 3 x + 3.15 x − x = 20 A B C Câu 17 [122 14d] Với giá trị m phương trình A ≤ m ≤ 3|x−2| = m − có nghiệm C < m ≤ B ≤ m ≤ D Vô nghiệm D < m ≤ Câu 18 [122 7d]...Câu 13 [122 13d] Có giá trị nguyên m để phương trình nhất? A B 3|x−1| C = 3m − có nghiệm D Câu 14 [122 12d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C Vơ nghiệm D Câu 15 [122 5d]