Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tìm giới hạn lim 2n + 1 n + 1 A 0 B 3 C 2 D 1 Câu 2 Tí[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Tìm giới hạn lim A x+1 Câu Tính lim x→−∞ 6x − A 2n + n+1 B B 2n − Câu Tính lim 2n + 3n + A +∞ B C C D 1 D C D −∞ Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim f (x) = f (a) B f (x) có giới hạn hữu hạn x → a x→a C lim+ f (x) = lim− f (x) = a x→a x→a x+1 Câu Tính lim x→+∞ 4x + A B 4x + Câu [1] Tính lim bằng? x→−∞ x + A B D lim+ f (x) = lim− f (x) = +∞ x→a C x→a D C −1 D −4 C D Câu Giá trị lim(2x2 − 3x + 1) x→1 A B +∞ Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim+ f (x) = f (a) lim+ f (x) = f (b) B lim− f (x) = f (a) lim− f (x) = f (b) x→a x→b C lim− f (x) = f (a) lim+ f (x) = f (b) x→a x→b √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − A B Câu 10 Tính lim A +∞ x→3 x2 − x−3 B x→a x→b x→a x→b D lim+ f (x) = f (a) lim− f (x) = f (b) C − D C D −3 Câu 11 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m < B m ≥ C m ≤ D m > 4 4 log(mx) Câu 12 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m ≤ B m < ∨ m = C m < ∨ m > D m < Câu 13 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 4) B (2; 4; 3) C (2; 4; 6) D (1; 3; 2) Trang 1/5 Mã đề Câu 14 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 2020 B log2 13 C 2020 D 13 √ √ Câu 15 [12215d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm 3 B m ≥ C ≤ m ≤ D ≤ m ≤ A < m ≤ 4 2 Câu 16 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a + b + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 log 2x Câu 17 [1229d] Đạo hàm hàm số y = x2 − ln 2x − log 2x 1 − ln 2x A y0 = B y0 = C y0 = D y0 = 3 2x ln 10 x 2x ln 10 x ln 10 √ Câu 18 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A Vô số B 64 C 63 D 62 √ Câu 19 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị " đây? ! " nhỏ! biểu thức P = x + 2y thuộc tập 5 ;3 B [3; 4) C 2; D (1; 2) A 2 q Câu 20 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 4] B m ∈ [−1; 0] C m ∈ [0; 1] D m ∈ [0; 2] 2 12 + 22 + · · · + n2 Câu 21 [3-1133d] Tính lim n3 A B +∞ C D 3 + + ··· + n Câu 22 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + 1 A lim un = B lim un = C lim un = D Dãy số un khơng có giới hạn n → +∞ n−1 Câu 23 Tính lim n +2 A B C D Câu 24 Trong mệnh đề đây, mệnh đề nào!sai? un A Nếu lim un = a , lim = ±∞ lim = ! un B Nếu lim un = a < lim = > với n lim = −∞ C Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un = +∞ D Nếu lim un = a > lim = lim ! 1 Câu 25 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C D Trang 2/5 Mã đề ! 3n + 2 Câu 26 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D Câu 27 Dãy số sau có giới hạn khác 0? n+1 B A n n C sin n n D √ n Câu 28 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C 1 1 + + ··· + 1+2 + + ··· + n C B 2 D ! Câu 29 [3-1131d] Tính lim A Câu 30 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B −∞ C +∞ D +∞ un D Câu 31 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC 1 ab ab B √ C √ D A √ a + b2 a2 + b2 a2 + b2 a2 + b2 √ Câu 32 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ a 38 3a 3a 38 3a 58 A B C D 29 29 29 29 Câu 33 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường√thẳng BD0 √ √ √ abc b2 + c2 c a2 + b2 b a2 + c2 a b2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 34 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A B a C 2a D a [ = 60◦ , S O Câu 35 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a.√Khoảng cách từ O đến (S √ BC) √ a 57 2a 57 a 57 A B C D a 57 17 19 19 Câu 36 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B C a D 2 Trang 3/5 Mã đề [ = 60◦ , S O Câu 37 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a.√Khoảng cách từ A đến (S √ BC) √ √ a 57 a 57 2a 57 A a 57 B C D 19 19 17 Câu 38 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) a 5a 2a 8a B C D A 9 9 Câu 39 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a A a B C D Câu 40 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C) (A0C D) √ √ √ √ 2a a a C D A a B 2 Câu 41 Z Trong khẳng định sau, khẳng định sai? Z A dx = ln |x| + C, C số B dx = x + C, C số Z x Z xα+1 C xα dx = + C, C số D 0dx = C, C số α+1 Câu 42 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A Cả ba mệnh đề B (I) (II) C (II) (III) D (I) (III) Câu 43 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu sai B Chỉ có (II) C Chỉ có (I) D Cả hai câu Câu 44 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai B Chỉ có (II) C Chỉ có (I) D Cả hai sai Trang 4/5 Mã đề Câu 45 Hàm số f có nguyên hàm K A f (x) có giá trị nhỏ K C f (x) liên tục K Câu 46 Z Các khẳng định sau Z sai? B f (x) xác định K D f (x) có giá trị lớn K Z !0 f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C B f (x)dx = f (x) Z Z Z Z C k f (x)dx = k f (x)dx, k số D f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C A Câu 47 Trong khẳng định sau, khẳng định sai?√ A F(x) = x nguyên hàm hàm số f (x) = x B F(x) = x2 nguyên hàm hàm số f (x) = 2x C Cả ba đáp án D Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số Câu 48 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) + g(x)]dx = A Z B [ f (x) − g(x)]dx = f (x)dx + Z g(x)dx, với f (x), g(x) liên tục R Z f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z D k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R C Câu 49 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A G(x) = F(x) − C khoảng (a; b), với C số B F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số C F(x) = G(x) khoảng (a; b) D Cả ba câu sai Câu 50 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z B Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z f (x)dx = g0 (x)dx D Nếu f (x) = g(x) + 1, ∀x ∈ R - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 C C A A A B B D C 10 11 C 12 B 13 C 14 B 15 D 16 A 17 D 18 19 A 20 21 C C D B 22 A 24 D 26 D 27 A 28 D 29 A 30 A 31 A 32 D 34 D 23 B D 25 33 D C 35 C 36 37 B 38 D 39 B 40 D 41 C 43 45 D C 42 B 44 B 46 A 47 A 48 49 A 50 D C ... ∈ R - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 C C A A A B B D C 10 11 C 12 B 13 C 14 B 15 D 16 A 17 D 18 19 A 20 21 C C D B 22 A 24 D... hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A Cả ba mệnh đề B (I) (II) C (II) (III)... (un ) với un = Mệnh đề sau đúng? n2 + 1 A lim un = B lim un = C lim un = D Dãy số un khơng có giới hạn n → +∞ n−1 Câu 23 Tính lim n +2 A B C D Câu 24 Trong mệnh đề đây, mệnh đề nào!sai? un A Nếu