Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Tìm giới hạn lim 2n + 1 n + 1 A 2 B 0 C 3 D 1 Câu 2 Tính lim x→+∞ x − 2 x + 3 A − 2 3 B −3 C 1 D 2 Câu 3 Tí[.]
Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi 2n + Câu Tìm giới hạn lim n+1 A B x−2 Câu Tính lim x→+∞ x + A − B −3 x2 − 5x + Câu Tính giới hạn lim x→2 x−2 A B Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B − 2n Câu [1] Tính lim bằng? 3n + 2 B − A 3 x+1 Câu Tính lim x→−∞ 6x − A B x2 − Câu Tính lim x→3 x − A B +∞ x+1 Câu Tính lim x→+∞ 4x + 1 B A x − 12x + 35 Câu Tính lim x→5 25 − 5x A −∞ B +∞ x−3 Câu 10 [1] Tính lim bằng? x→3 x + A +∞ B −∞ C D C D C −1 D C D C D D C C D −3 C D C C D − D Câu 11 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b D A B C 2 Câu 12 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 3) B (2; 4; 4) C (2; 4; 6) D (1; 3; 2) Câu 13 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 2020 B 13 C log2 13 D 2020 Câu 14 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≥ B m ≤ C m > D m < 4 4 Trang 1/5 Mã đề Câu 15 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị " nhỏ! biểu thức P" = x!+ 2y thuộc tập đây? 5 A 2; B ;3 C (1; 2) D [3; 4) 2 √ ab Câu 16 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A Vô số B C D − xy = 3xy + x + 2y − Tìm giá trị nhỏ Câu 17 [12210d] Xét số thực dương x, y thỏa mãn log3 x + 2y Pmin P = x√+ y √ √ √ 11 − 11 + 19 11 − 19 18 11 − 29 A Pmin = B Pmin = C Pmin = D Pmin = 9 21 Câu 18 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D Câu 19 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C D Vô nghiệm √ Câu 20 [12215d] Tìm m để phương trình x+ B ≤ m ≤ A ≤ m ≤ 4 2n − Câu 21 Tính lim 3n + n4 A B 1−x2 √ − 4.2 x+ 1−x2 − 3m + = có nghiệm C m ≥ D < m ≤ C D Câu 22 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D Câu 23 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un B Nếu lim un C Nếu lim un D Nếu lim un ! un = a < lim = > với n lim = −∞ = +∞ lim = a > lim(un ) = +∞ ! un = a , lim = ±∞ lim = v! n un = a > lim = lim = +∞ Câu 24 Tính lim A Câu 25 Tính lim A n−1 n2 + n+3 B C D B C D Trang 2/5 Mã đề 12 + 22 + · · · + n2 n3 B +∞ Câu 26 [3-1133d] Tính lim D 3 + + ··· + n Mệnh đề sau đúng? Câu 27 [3-1132d] Cho dãy số (un ) với un = n2 + 1 A lim un = B lim un = C lim un = D Dãy số un khơng có giới hạn n → +∞ A C Câu 28 Dãy số sau có giới hạn 0? n2 − n2 − 3n B u = A un = n n2 5n − 3n2 C un = Câu 29 Phát biểu sau sai? A lim √ = n B lim un = c (Với un = c số) n2 + n + (n + 1)2 D un = − 2n 5n + n2 = với k > nk un Câu 30 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A −∞ B C +∞ D C lim qn = với |q| > D lim Câu 31 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a A a B a C D Câu 32 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab 1 A B C D √ √ √ a + b2 a2 + b2 a2 + b2 a2 + b2 d = 30◦ , biết S BC tam giác Câu 33 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 26 13 16 Câu 34 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 2a 5a a 8a A B C D 9 9 3a , hình chiếu vng Câu 35 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a a 2a A B C D 3 d = 120◦ Câu 36 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 2a B 3a C D 4a [ = 60◦ , S O Câu 37 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a Khoảng cách từ A đến (S BC) Trang 3/5 Mã đề √ a 57 A 19 √ 2a 57 B 19 √ a 57 C 17 √ D a 57 [ = 60◦ , S O Câu 38 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a.√Khoảng cách từ O đến (S √ BC) √ √ 2a 57 a 57 a 57 A a 57 B C D 19 17 19 Câu 39 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab C √ D √ A B √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 40 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B C a D Câu 41 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? ( f (x) − g(x))dx = A Z C ( f (x) + g(x))dx = f (x)dx − Z f (x)dx + g(x)dx B Z Z g(x)dx D f (x)g(x)dx = f (x)dx g(x)dx Z k f (x)dx = f f (x)dx, k ∈ R, k , Câu 42 Trong khẳng định sau, khẳng định sai? A Cả ba đáp án B Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số √ C F(x) = x nguyên hàm hàm số f (x) = x D F(x) = x2 nguyên hàm hàm số f (x) = 2x Câu 43 Hàm số f có nguyên hàm K A f (x) liên tục K C f (x) xác định K B f (x) có giá trị nhỏ K D f (x) có giá trị lớn K Câu 44 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (I) B Chỉ có (II) C Cả hai D Cả hai sai Câu 45 Mệnh đề sau sai? A Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) B F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) !0 Z C f (x)dx = f (x) Z D Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C Câu 46 Z Trong khẳng định sau, khẳng định sai? Z 0dx = C, C số A Z C dx = ln |x| + C, C số x B Z D dx = x + C, C số xα dx = xα+1 + C, C số α+1 Trang 4/5 Mã đề Câu 47 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A Cả ba mệnh đề B (II) (III) C (I) (II) D (I) (III) Câu 48 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) khoảng (a; b) B Cả ba câu sai C G(x) = F(x) − C khoảng (a; b), với C số D F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số Câu 49 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R A Nếu Z Z B Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z C Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Câu 50 Z Các khẳng định sau Z sai? f (x)dx = F(x) +C ⇒ !0 Z C f (x)dx = f (x) A f (u)dx = F(u) +C B Z Z f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C Z Z D k f (x)dx = k f (x)dx, k số - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A C C A B C C C 10 11 C 12 13 C 14 B 16 B 17 A 18 B 19 A 20 A 15 21 B B 23 D B D C 22 D 24 D 25 B 26 27 B 28 D 30 D C 29 31 33 D D 41 47 C D 38 C B 43 A 45 D 36 B 39 B 34 B 35 37 32 C 40 C 42 C 44 B 46 B 48 C 49 A 50 A D C ... giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 26 13 16 Câu 34 [3] Cho khối chóp S ABC có đáy tam giác vuông... số - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A C C A B C C C 10 11 C 12 13 C 14 B 16 B 17 A 18 B 19 A 20 A 15 21 B B 23 D B D C 22 D 24