Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Tìm giới hạn lim 2n + 1 n + 1 A 1 B 3 C 2 D 0 Câu 2 Tính lim √ 4n2 + 1 − √ n + 2 2n − 3 bằng A 3 2 B +∞ C 1[.]
Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi 2n + Câu Tìm giới hạn lim n+1 A B √ √ 4n2 + − n + Câu Tính lim 2n − 3 A B +∞ 2x + Câu Tính giới hạn lim x→+∞ x + A B C D C D C Câu Dãy !n số sau có giới !n hạn 0? A − B e D −1 !n C !n D Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A −1 + sin x cos x B − sin 2x C −1 + sin 2x D + sin 2x Câu Giá trị lim(2x2 − 3x + 1) x→1 B +∞ x2 − 5x + Câu Tính giới hạn lim x→2 x−2 A B −1 x2 − Câu Tính lim x→3 x − A B √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 A B x−3 Câu 10 [1] Tính lim bằng? x→3 x + A +∞ B A C D C D C +∞ D −3 C − D C −∞ D log(mx) Câu 11 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m = B m ≤ C m < ∨ m > D m < Câu 12 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D √ √ Câu 13 [12215d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm 3 A ≤ m ≤ B < m ≤ C ≤ m ≤ D m ≥ 4 log 2x Câu 14 [1229d] Đạo hàm hàm số y = x2 − ln 2x − log 2x 1 − ln 2x A y0 = B y0 = C y0 = D y0 = 3 2x ln 10 x 2x ln 10 x ln 10 2 Trang 1/5 Mã đề Câu 15 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C Vô nghiệm D √ Câu 16 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 62 B Vô số C 64 D 63 Câu 17 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C D Vô nghiệm Câu 18 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (1; 3; 2) B (2; 4; 6) C (2; 4; 3) D (2; 4; 4) Trong khẳng định sau đây, khẳng định đúng? x+1 y B xy = −e + C xy0 = ey − D xy0 = ey + Câu 19 [3-12217d] Cho hàm số y = ln A xy0 = −ey − Câu 20 [12214d] Với giá trị m phương trình A ≤ m ≤ B < m ≤ 1 3|x−2| = m − có nghiệm C < m ≤ D ≤ m ≤ Câu 21 Phát biểu sau sai? = với k > nk C lim un = c (Với un = c số) D lim √ = n ! 1 Câu 22 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n C D +∞ A B 2 7n2 − 2n3 + Câu 23 Tính lim 3n + 2n2 + B - C D A 3 ! 1 + + ··· + Câu 24 Tính lim 1.2 2.3 n(n + 1) A B C D n−1 Câu 25 Tính lim n +2 A B C D un Câu 26 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B +∞ C −∞ D A lim qn = với |q| > B lim Câu 27 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D Trang 2/5 Mã đề Câu 28 [3-1132d] Cho dãy số (un ) với un = A lim un = C lim un = 1 + + ··· + n Mệnh đề sau đúng? n2 + B lim un = D Dãy số un giới hạn n → +∞ ! 3n + 2 Câu 29 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D 2n2 − Câu 30 Tính lim 3n + n4 A B C D Câu 31 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a B a C D A Câu 32 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A B a C 2a D a 0 0 Câu 33.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D 3a Câu 34 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a 2a a a B C D A 3 Câu 35 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S√B a a a A B C a D [ = 60◦ , S O Câu 36 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a.√Khoảng cách từ A đến (S √ BC) √ a 57 2a 57 a 57 A B C D a 57 17 19 19 d = 120◦ Câu 37 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 2a B 4a C D 3a Câu 38 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab 1 A √ B C √ D √ 2 2 a +b a +b a +b a2 + b2 Câu 39 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) Trang 3/5 Mã đề √ √ √ a a B C D a 0 0 Câu 40 [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab 1 A B √ C √ D √ a +b a2 + b2 a2 + b2 a2 + b2 √ A 2a Câu 41 Z Các khẳng định sau Z sai? f (x)dx = F(x) +C ⇒ Z k f (x)dx = k f (x)dx, k số !0 Z Z Z C f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C D f (x)dx = f (x) A f (u)dx = F(u) +C B Z Câu 42 Z Trong khẳng định sau, khẳng định sai? Z 0dx = C, C số A Z C dx = x + C, C số B Z D xα dx = xα+1 + C, C số α+1 dx = ln |x| + C, C số x Câu 43 đề sai? Z Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z ( f (x) + g(x))dx = f (x)dx + g(x)dx B ( f (x) − g(x))dx = f (x)dx − g(x)dx A Z Z Z Z Z C k f (x)dx = f f (x)dx, k ∈ R, k , D f (x)g(x)dx = f (x)dx g(x)dx Câu 44 Cho hai hàm y = f (x), y = g(x) Z có đạo hàm Z R Phát biểu sau đúng? A Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z B Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Câu 45 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (II) sai B Câu (I) sai C Khơng có câu D Câu (III) sai sai Câu 46 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A Cả ba câu sai B F(x) = G(x) khoảng (a; b) C F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số D G(x) = F(x) − C khoảng (a; b), với C số Câu 47 Mệnh đề sau sai? Z A Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C Trang 4/5 Mã đề B F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) !0 Z C f (x)dx = f (x) D Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Câu 48 Trong khẳng định sau, khẳng định sai? A F(x) = x2 nguyên hàm hàm số f (x) = 2x B Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số C Cả ba đáp án √ D F(x) = x nguyên hàm hàm số f (x) = x Câu 49 Hàm số f có nguyên hàm K A f (x) có giá trị lớn K C f (x) có giá trị nhỏ K B f (x) xác định K D f (x) liên tục K Câu 50 Trong khẳng định sau, khẳng định sai? A F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x B F(x) = − cos x nguyên hàm hàm số f (x) = sin x C Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Z u0 (x) dx = log |u(x)| + C D u(x) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 C A C B D D B 10 C 11 A D 12 A 13 16 A 17 A 18 19 D 14 C 15 A C B 20 21 A 23 C C 22 A 24 B 25 D 26 27 D 28 A 29 C 30 A 31 C 32 33 D C D B 34 C 35 C 36 37 C 38 A 39 C 40 B 42 B 41 A 43 D 45 47 49 44 C B D B C 46 D 48 D 50 D ... S A B C D 2n2 − Câu 30 Tính lim 3n + n4 A B C D Câu 31 [2] Cho hình chóp S ABCD có đáy hình vuông cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a B a C D A Câu... u(x) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 C A C B D D B 10 C 11 A D 12 A 13 16 A 17 A 18 19 D 14 C 15 A C B 20 21 A 23 C C 22 A 24 B