Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Tính lim x→2 x + 2 x bằng? A 1 B 0 C 2 D 3 Câu 2 [1] Tính lim 1 − 2n 3n + 1 bằng? A 2 3 B − 2 3 C 1 D 1 3 C[.]
Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi x+2 bằng? x→2 x A B − 2n Câu [1] Tính lim bằng? 3n + 2 A B − 3 2x + Câu Tính giới hạn lim x→+∞ x + 1 A −1 B Câu Tính lim C D C D C D C D 1 Câu Giá trị lim (3x2 − 2x + 1) A +∞ x→1 B Câu Phát biểu sau sai? A lim = n C lim un = c (un = c số) = nk D lim qn = (|q| > 1) B lim Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 B Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm x0 hàm số liên tục điểm − n2 bằng? Câu [1] Tính lim 2n + 1 B − A 2 x+1 Câu Tính lim x→−∞ 6x − A B x2 − 12x + 35 Câu Tính lim x→5 25 − 5x A B −∞ √ x2 + 3x + Câu 10 Tính giới hạn lim x→−∞ 4x − 1 A B − Câu 11 [1225d] Tìm tham số thực m để phương x≥1 A m < B m > C D D C C − D +∞ trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực C D C m ≤ D m ≥ Câu 12 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B < m ≤ C ≤ m ≤ D < m ≤ Trang 1/5 Mã đề Câu 13 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 3) B (1; 3; 2) C (2; 4; 4) D (2; 4; 6) Câu 14 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D 1 − xy Câu 15 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x + √ y √ √ √ 18 11 − 29 11 + 19 11 − 19 11 − A Pmin = B Pmin = C Pmin = D Pmin = 21 9 Câu 16 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C D Vô nghiệm log(mx) Câu 17 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < B m < ∨ m > C m ≤ D m < ∨ m = log 2x Câu 18 [1229d] Đạo hàm hàm số y = x2 1 − ln 2x − log 2x − ln 2x C y0 = D y0 = A y0 = B y0 = 3 x x ln 10 2x ln 10 2x3 ln 10 Câu 19 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B Vô số C D √ Câu 20 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 64 B 63 C Vô số D 62 un Câu 21 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A −∞ B C +∞ D n−1 Câu 22 Tính lim n +2 A B C D Câu 23 Phát biểu sau sai? A lim un = c (Với un = c số) B lim √ = n = với k > D lim qn = với |q| > nk Câu 24 Trong mệnh đề đây, mệnh đề nào!sai? un A Nếu lim un = a , lim = ±∞ lim = ! un B Nếu lim un = a < lim = > với n lim = −∞ C Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un D Nếu lim un = a > lim = lim = +∞ C lim Câu 25 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương Trang 2/5 Mã đề (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A Câu 26 Tính lim A −∞ B cos n + sin n n2 + B +∞ Câu 27 Dãy số sau có giới hạn 0? − 2n n2 − 3n A un = B u = n 5n + n2 n2 Câu 28 Tính lim 7n2 − 2n3 + 3n3 + 2n2 + B C D C C un = n2 − 5n − 3n2 D un = n2 + n + (n + 1)2 ! 3n + 2 Câu 29 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D Câu 30 Tính lim n+3 A B C D A C - D D Câu 31 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a B C D a A 2 d = 120◦ Câu 32 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 2a B 3a C 4a D d = 30◦ , biết S BC tam giác Câu 33 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 26 13 16 0 0 Câu 34.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D 3a Câu 35 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a a 2a A B C D 3 [ = 60◦ , S O Câu 36 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ O đến (S √ BC) √ 2a 57 a 57 a 57 A B C D a 57 19 17 19 Trang 3/5 Mã đề Câu 37 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a B C a D a A 2a Câu 38 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ a b2 + c2 b a2 + c2 abc b2 + c2 c a2 + b2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 39 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) a 8a 5a 2a B C D A 9 9 Câu 40 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a A a B C D Câu 41 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai B Chỉ có (I) C Cả hai sai D Chỉ có (II) Câu 42 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (II) sai B Câu (III) sai C Khơng có câu D Câu (I) sai sai Câu 43 Các khẳng !0 định sau sai? Z Z Z A f (x)dx = f (x) B k f (x)dx = k f (x)dx, k số Z Z Z Z C f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C D f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C Câu 44 Mệnh đề sau sai? A F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a;Zb) B Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C C Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) !0 Z D f (x)dx = f (x) Trang 4/5 Mã đề Câu 45 Cho hai hàm y = f (x), y = g(x) Z có đạo hàm Z R Phát biểu sau đúng? A Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z B Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Câu 46 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 47 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B (I) (III) C (II) (III) D Cả ba mệnh đề Câu 48 đề sai? Z Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z A ( f (x) + g(x))dx = f (x)dx + g(x)dx B ( f (x) − g(x))dx = f (x)dx − g(x)dx Z Z Z Z Z C f (x)g(x)dx = f (x)dx g(x)dx D k f (x)dx = f f (x)dx, k ∈ R, k , Câu 49 Trong khẳng định sau, khẳng định sai? A Z F(x) = − cos x nguyên hàm hàm số f (x) = sin x u0 (x) B dx = log |u(x)| + C u(x) C F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x D Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Câu 50 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu sai B Chỉ có (II) C Chỉ có (I) D Cả hai câu - - - - - - - - - - HẾT- - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 C C D C D B A B B D 12 13 D 14 15 D 16 17 D 18 C C 10 11 19 B D C B 20 D 21 D 22 D 23 D 24 D 25 A 26 D 27 A 28 29 D 30 A 31 D 32 C 33 34 D 35 36 C D B C 37 C 38 A 39 C 40 C C 41 D 42 43 D 44 A 45 D 46 A 47 A 49 48 50 B C D ... câu - - - - - - - - - - HẾT- - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 C C D C D B A B B D 12 13 D 14 15 D 16 17 D 18 C C 10 11 19 B D C B 20 D 21 D 22 D 23 D 24