1. Trang chủ
  2. » Tất cả

Ôn thi toán thptqg pdf (712)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 113,28 KB

Nội dung

Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [1] Tính lim 1 − n2 2n2 + 1 bằng? A 0 B 1 2 C − 1 2 D 1 3 Câu 2 Giá trị của lim x→1 (2x2 − 3x + 1) là A 2 B[.]

Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi 1 − n2 bằng? 2n2 + 1 A B 2 Câu Giá trị lim(2x − 3x + 1) x→1 A B − 2n Câu [1] Tính lim bằng? 3n + 2 A − B 3 √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 A − B x2 − 5x + Câu Tính giới hạn lim x→2 x−2 A B −1 Câu [1] Tính lim Câu Phát biểu sau sai? A lim k = n C lim qn = (|q| > 1) 2−n Câu Giá trị giới hạn lim n+1 A B x−2 Câu Tính lim x→+∞ x + A B Câu Giá trị lim (3x2 − 2x + 1) x→1 A B +∞ C − D C +∞ D C D D C D C B lim un = c (un = c số) D lim = n C −1 D 2 C − D −3 C D Câu 10 Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim+ f (x) = f (a) lim− f (x) = f (b) B lim+ f (x) = f (a) lim+ f (x) = f (b) x→a x→a x→b x→b C lim− f (x) = f (a) lim− f (x) = f (b) D lim− f (x) = f (a) lim+ f (x) = f (b) x→a x→b x→a x→b log 2x Câu 11 [1229d] Đạo hàm hàm số y = x2 − ln 2x − ln 2x A y0 = B y0 = C y0 = x ln 10 2x ln 10 2x ln 10 Câu 12 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B Vô nghiệm C D y0 = − log 2x x3 D Câu 13 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a + b + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 2 Trang 1/5 Mã đề Câu 14 [12216d] Tìm tất giá trị thực tham số m để phương trình log23 √ i h có nghiệm thuộc đoạn 1; A m ∈ [0; 1] B m ∈ [0; 4] C m ∈ [−1; 0] Câu 15 [12213d] Có giá trị nguyên m để phương trình nhất? A B q x+ log23 x + 1+4m−1 = D m ∈ [0; 2] 3|x−1| C = 3m − có nghiệm D Câu 16 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A Vô nghiệm B C D Câu 17 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 3) B (1; 3; 2) C (2; 4; 4) D (2; 4; 6) − xy = 3xy + x + 2y − Tìm giá trị nhỏ Câu 18 [12210d] Xét số thực dương x, y thỏa mãn log3 x + 2y Pmin P = x + √ √ √ √ y 11 + 19 11 − 19 11 − 18 11 − 29 B Pmin = C Pmin = D Pmin = A Pmin = 21 9 Câu 19 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = e + B xy = −e − C xy0 = ey − D xy0 = −ey + 1 Câu 20 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B < m ≤ C ≤ m ≤ D < m ≤ 1 + + ··· + n Mệnh đề sau đúng? Câu 21 [3-1132d] Cho dãy số (un ) với un = n2 + 1 A Dãy số un khơng có giới hạn n → +∞ B lim un = C lim un = D lim un = Câu 22 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un B Nếu lim un = a < lim = > với n lim = −∞ ! un = C Nếu lim un = a , lim = ±∞ lim !vn un D Nếu lim un = a > lim = lim = +∞ Câu 23 Dãy số sau có giới hạn 0? n2 − n2 + n + B u = A un = n 5n − 3n2 (n + 1)2 C un = − 2n 5n + n2 ! 1 + + ··· + 1+2 + + ··· + n B C D un = n2 − 3n n2 Câu 24 [3-1131d] Tính lim ! 3n + 2 Câu 25 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D A +∞ D Trang 2/5 Mã đề Câu 26 Tính lim n+3 A B Câu 27 Dãy số sau có giới hạn khác 0? n+1 B A √ n n C C n D D sin n n Câu 28 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A Câu 29 Tính lim A −∞ B cos n + sin n n2 + B +∞ C D C D un Câu 30 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A −∞ B C +∞ D Câu 31 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a A a B C D 0 0 Câu 32.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a B C D A Câu 33 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ a 2a a A B C a D Câu 34 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ √ = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ a a B a C 2a D A d = 120◦ Câu 35 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A B 3a C 4a D 2a Câu 36 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A 2a B a C D a Câu 37 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a A a B C a D Trang 3/5 Mã đề [ = 60◦ , S O Câu 38 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ Khoảng cách từ O đến (S√BC) √ với mặt đáy S O = a √ a 57 2a 57 a 57 A B C D a 57 19 17 19 0 0 Câu 39 [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab A √ B √ C √ D a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 40 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab B √ C √ D √ A 2 a +b a2 + b2 a2 + b2 a2 + b2 Câu 41 Mệnh đề sau sai? A F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) !0 Z B f (x)dx = f (x) C Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Z D Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C Câu 42 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B (I) (II) C Cả ba mệnh đề D (I) (III) Câu 43 Trong khẳng định sau, khẳng định sai? A Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số √ B F(x) = x nguyên hàm hàm số f (x) = x C Cả ba đáp án D F(x) = x2 nguyên hàm hàm số f (x) = 2x Câu 44 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có F (x) = f (x), ngồi F (a+ ) = f (a) F (b− ) = f (b) C Với x ∈ (a; b), ta có f (x) = F(x) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 45 Z Trong cácα+1khẳng định sau, khẳng định sai? Z x A xα dx = + C, C số B dx = ln |x| + C, C số α+1 Z Z x C 0dx = C, C số D dx = x + C, C số Câu 46 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn Trang 4/5 Mã đề (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai sai B Chỉ có (II) C Chỉ có (I) D Cả hai Câu 47 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A Cả ba câu sai B F(x) = G(x) khoảng (a; b) C G(x) = F(x) − C khoảng (a; b), với C số D F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số Câu 48 Hàm số f có nguyên hàm K A f (x) xác định K C f (x) có giá trị nhỏ K B f (x) liên tục K D f (x) có giá trị lớn K Câu 49 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (II) B Cả hai câu C Cả hai câu sai D Chỉ có (I) Câu 50 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 C A A B A C D 10 A 11 A 12 A 13 A 14 15 A 16 17 C 24 D B D D 32 C 34 B 35 A 36 37 D D B 38 A B 40 41 A B 45 A 49 B D 31 47 D 28 30 43 B D D 39 D 26 29 33 B 22 B 25 27 20 C 23 C 18 D 19 C 21 B C B 42 B 44 B 46 B 48 B 50 A C ... D - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 C A A B A C D 10 A 11 A 12 A 13 A 14 15 A 16 17 C 24 D B D D 32 C 34 B 35 A 36 37 D D B 38

Ngày đăng: 07/03/2023, 10:50

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w