Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Tính lim x→5 x2 − 12x + 35 25 − 5x A − 2 5 B 2 5 C +∞ D −∞ Câu 2 Phát biểu nào trong các phát biểu sau là đ[.]
Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi Câu Tính lim x→5 A − x2 − 12x + 35 25 − 5x B C +∞ D −∞ Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 D Nếu hàm số có đạo hàm x0 hàm số liên tục điểm Câu !Dãy số sau có giới !hạn 0? n n A B − e Câu Tính giới hạn lim A 2n + 3n + 2 B x+1 x→+∞ 4x + 1 A B x−3 Câu [1] Tính lim bằng? x→3 x + A B −∞ x−2 Câu Tính lim x→+∞ x + B A − !n C C !n D 3 D Câu Tính lim Câu Dãy số có giới hạn 0? ! n n3 − 3n −2 A un = B un = n+1 C D C +∞ D C D −3 C un = n − 4n !n D un = C D +∞ Câu Giá trị lim (3x2 − 2x + 1) x→1 A B 2x + Câu 10 Tính giới hạn lim x→+∞ x + A B −1 C log 2x x2 − ln 2x − log 2x B y0 = C y0 = 2x ln 10 x3 D Câu 11 [1229d] Đạo hàm hàm số y = A y0 = − ln 2x x3 ln 10 D y0 = 2x3 ln 10 Câu 12 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C D Vô số Trang 1/5 Mã đề Câu 13 [12213d] Có giá trị nguyên m để phương trình nhất? A B C 3|x−1| = 3m − có nghiệm D Câu 14 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b B C D A 2 Câu 15 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C D Vô nghiệm Câu 16 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B ≤ m ≤ C ≤ m ≤ D < m ≤ log(mx) = có nghiệm thực Câu 17 [1226d] Tìm tham số thực m để phương trình log(x + 1) A m < ∨ m > B m ≤ C m < ∨ m = D m < Câu 18 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 6) B (1; 3; 2) C (2; 4; 3) D (2; 4; 4) − xy Câu 19 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x + √ √ √ √ y 11 − 11 − 19 11 + 19 18 11 − 29 B Pmin = C Pmin = D Pmin = A Pmin = 21 9 Câu 20 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≤ B m > C m ≥ D m < 4 4 7n − 2n + Câu 21 Tính lim 3n + 2n2 + B - C D A 3 Câu 22 Trong mệnh đề đây, mệnh đề sai? ! un A Nếu lim un = a < lim = > với n lim = −∞ ! un B Nếu lim un = a , lim = ±∞ lim = !vn un C Nếu lim un = a > lim = lim = +∞ D Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! 1 Câu 23 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C D un Câu 24 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A +∞ B −∞ C D Câu 25 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương Trang 2/5 Mã đề (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B 12 + 22 + · · · + n2 n3 B C D Câu 26 [3-1133d] Tính lim A C 1 + ··· + Câu 27 [3-1131d] Tính lim + 1+2 + + ··· + n A +∞ B C 2 Câu 28 Phát biểu sau sai? A lim √ = n C lim k = với k > n Câu 29 Dãy số sau có giới hạn khác 0? sin n B A n n D +∞ ! D B lim qn = với |q| > D lim un = c (Với un = c số) C n+1 n D √ n + + ··· + n Mệnh đề sau đúng? n2 + A lim un = B lim un = C Dãy số un giới hạn n → +∞ D lim un = Câu 30 [3-1132d] Cho dãy số (un ) với un = Câu 31 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B a C D Câu 32 [2] Cho hình chóp S ABCD có đáy hình vuông cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a B a D A C Câu 33 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vuông góc với ∆ AC = BD √ = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ a a A B C 2a D a 2 d = 30◦ , biết S BC tam giác Câu 34 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 16 13 26 Câu 35 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 2a a 8a 5a A B C D 9 9 Trang 3/5 Mã đề Câu 36 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab B √ C A √ D √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 37 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab A √ B √ C D √ a +b a2 + b2 a2 + b2 a2 + b2 0 0 Câu 38.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D 2 Câu 39 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ a b2 + c2 b a2 + c2 c a2 + b2 abc b2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 40 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ a 2a a B a D C A 2 Câu 41 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A Cả ba câu sai B F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số C G(x) = F(x) − C khoảng (a; b), với C số D F(x) = G(x) khoảng (a; b) Câu 42 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có f (x) = F(x) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 43 Xét hai câu sau Z Z Z ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên (I) hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu B Chỉ có (II) C Cả hai câu sai D Chỉ có (I) Câu 44 !0 sau sai? Z Mệnh đề A f (x)dx = f (x) B F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a;Zb) C Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C D Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Trang 4/5 Mã đề Câu 45 f (x), g(x) liên đề sai? Z Z Cho hàm số Z Z tục R Trong cácZmệnh đề sau, mệnh Z A f (x)g(x)dx = f (x)dx g(x)dx B ( f (x) + g(x))dx = f (x)dx + g(x)dx Z Z Z Z Z C ( f (x) − g(x))dx = f (x)dx − g(x)dx D k f (x)dx = f f (x)dx, k ∈ R, k , Câu 46 khẳng định sau, khẳng định sai? Z Trong u0 (x) dx = log |u(x)| + C A u(x) B F(x) = − cos x nguyên hàm hàm số f (x) = sin x C F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x D Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Câu 47 Hàm số f có nguyên hàm K A f (x) liên tục K C f (x) có giá trị nhỏ K B f (x) xác định K D f (x) có giá trị lớn K Câu 48 ! định sau sai? Z Các khẳng f (x)dx = f (x) A Z C Z B f (x)dx = F(x) + C ⇒ Z f (t)dt = F(t) + C D Z Z f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C Z k f (x)dx = k f (x)dx, k số Câu 49 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 50 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B Cả ba mệnh đề C (II) (III) D (I) (III) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 B C A B 12 A 13 D 14 A 16 B C 17 B 20 A 21 B 22 23 D 24 25 D 26 27 C 28 29 C 30 B D C B D 34 35 36 C C B 38 A B 39 A 40 A 42 A C 43 A 44 45 A 46 A 47 A 48 49 C 32 A 33 A 41 D 18 A 19 37 B 10 A C 11 A 31 B A 15 D 50 A C B B ... (III) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 B C A B 12 A 13 D 14 A 16 B C 17 B 20 A 21 B 22 23 D 24 25 D 26 27 C 28 29 C 30 B D C B D