1. Trang chủ
  2. » Tất cả

Ôn thi toán thptqg pdf (629)

6 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 112,81 KB

Nội dung

Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Tính lim x→3 x2 − 9 x − 3 A −3 B 3 C +∞ D 6 Câu 2 [1] Tính lim 1 − n2 2n2 + 1 bằng? A 0 B 1 2 C − 1 2 D 1 3[.]

Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi Câu Tính lim x→3 A −3 x2 − x−3 B − n2 bằng? 2n2 + 1 A B − 2n bằng? Câu [1] Tính lim 3n + 1 B A − 3 C +∞ D C − D C D !n C !n D C D C D Câu [1] Tính lim Câu !Dãy số sau có giới !hạn 0? n n A B − e Câu Giá trị lim (3x2 − 2x + 1) A +∞ x→1 B 2n + Câu Tìm giới hạn lim n+1 A B Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ f (x) a = x→+∞ g(x) b D lim [ f (x) + g(x)] = a + b A lim [ f (x)g(x)] = ab B lim x→+∞ C lim [ f (x) − g(x)] = a − b x→+∞ x→+∞ 2x + x→+∞ x + B Câu Tính giới hạn lim A −1 C 4x + bằng? x→−∞ x + B −4 D Câu [1] Tính lim A C D −1 Câu 10 Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim f (x) = f (a) B lim+ f (x) = lim− f (x) = a x→a x→a C lim+ f (x) = lim− f (x) = +∞ x→a x→a D f (x) có giới hạn hữu hạn x → a x→a Câu 11 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A Vô nghiệm B C √ √ D − 3m + = có nghiệm C < m ≤ D ≤ m ≤ 4 √ Câu 13 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 62 B Vơ số C 64 D 63 Câu 12 [12215d] Tìm m để phương trình x+ A ≤ m ≤ B m ≥ 1−x2 − 4.2 x+ 1−x2 Trang 1/5 Mã đề Câu 14 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (1; 3; 2) B (2; 4; 6) C (2; 4; 4) D (2; 4; 3) − xy = 3xy + x + 2y − Tìm giá trị nhỏ Câu 15 [12210d] Xét số thực dương x, y thỏa mãn log3 x + 2y Pmin P = x√+ y √ √ √ 11 − 19 11 + 19 11 − 18 11 − 29 A Pmin = B Pmin = C Pmin = D Pmin = 9 21 Câu 16 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = e + B xy = −e − C xy0 = ey − D xy0 = −ey + log(mx) = có nghiệm thực log(x + 1) C m < ∨ m = D m ≤ Câu 17 [1226d] Tìm tham số thực m để phương trình A m < ∨ m > B m < Câu 18 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 2020 B 2020 C 13 D log2 13 Câu 19 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 B m < C m ≥ D m > A m ≤ 4 4 2 Câu 20 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a + b + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b B C D A 2 ! 1 Câu 21 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C D Câu 22 Dãy số sau có giới hạn khác 0? 1 n+1 sin n B C √ A D n n n n 7n2 − 2n3 + 3n3 + 2n2 + A B - 2n − Câu 24 Tính lim 3n + n4 A B Câu 23 Tính lim n−1 Câu 25 Tính lim n +2 A B C D C D C D Câu 26 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim un D C +∞ + + ··· + n Câu 27 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + A Dãy số un khơng có giới hạn n → +∞ B lim un = 1 C lim un = D lim un = A −∞ B Trang 2/5 Mã đề Câu 28 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C 1 + + ··· + 1+2 + + ··· + n A B +∞ C 2 12 + 22 + · · · + n2 Câu 30 [3-1133d] Tính lim n3 A B C +∞ 3 D ! Câu 29 [3-1131d] Tính lim D D d = 120◦ Câu 31 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A B 4a C 2a D 3a [ = 60◦ , S O Câu 32 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ √ với mặt đáy S O = a Khoảng cách từ O đến (S√BC) √ a 57 a 57 2a 57 B a 57 D A C 19 19 17 [ = 60◦ , S O Câu 33 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ Khoảng cách từ A đến (S √ BC) √ √ a 57 a 57 2a 57 A a 57 B C D 19 17 19 Câu 34 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a A a C D B Câu 35 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A B a C 2a D a Câu 36 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab 1 ab A B √ C √ D √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 37 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a A B a C a D Câu 38 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ c a2 + b2 abc b2 + c2 a b2 + c2 b a2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Trang 3/5 Mã đề Câu 39 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C) (A0C D) √ √ √ √ 2a a a B C D A a 2 Câu 40 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ √ a a A a C 2a B D Câu 41 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu B Cả hai câu sai C Chỉ có (II) Câu 42 Hàm số f có nguyên hàm K A f (x) xác định K C f (x) có giá trị nhỏ K B f (x) liên tục K D f (x) có giá trị lớn K D Chỉ có (I) Câu 43 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) D Với x ∈ (a; b), ta có f (x) = F(x) Câu 44 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có nguyên hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (II) sai B Câu (I) sai C Khơng có câu D Câu (III) sai sai Câu 45 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B (I) (II) C (II) (III) D Cả ba mệnh đề Câu 46 Trong khẳng định sau, khẳng định sai? A Cả ba đáp án B Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số C F(x) = x2 nguyên hàm hàm số f (x) = 2x √ D F(x) = x nguyên hàm hàm số f (x) = x Trang 4/5 Mã đề Câu 47 Z Trong cácα+1khẳng định sau, khẳng định sai? Z x + C, C số B dx = x + C, C số A xα dx = α+1 Z Z C 0dx = C, C số D dx = ln |x| + C, C số x Câu 48 Cho Z hai hàm yZ= f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z C Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z D Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Câu 49 Mệnh đề sau sai? A F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) B Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Z C Nếu F(x) nguyên hàm f (x) (a; b) C số !0 Z f (x)dx = f (x) D f (x)dx = F(x) + C Câu 50 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (I) B Cả hai C Chỉ có (II) D Cả hai sai - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D A D D C B A B 10 A C 11 12 A 13 A 14 15 C 16 17 C 18 19 A 20 21 A 22 A 23 C C D C 24 A B 25 A 27 B C D 29 31 A 26 B 28 B 30 B 32 A 33 D 34 D 35 D 36 D 37 A C 38 39 D 40 41 A 42 43 C 44 D B C 46 D 47 A 48 D 49 A 50 45 B C ... sai - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D A D D C B A B 10 A C 11 12 A 13 A 14 15 C 16 17 C 18 19 A 20 21 A 22 A 23 C C D C 24 A B

Ngày đăng: 07/03/2023, 10:34

w