1. Trang chủ
  2. » Tất cả

Ôn thi toán thptqg pdf (401)

6 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 113,55 KB

Nội dung

Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Tính lim 2n − 3 2n2 + 3n + 1 bằng A −∞ B 1 C +∞ D 0 Câu 2 Phát biểu nào sau đây là sai? A lim 1 nk = 0 B li[.]

Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi Câu Tính lim A −∞ 2n − 2n2 + 3n + B C +∞ Câu Phát biểu sau sai? A lim k = n C lim un = c (un = c số) D B lim qn = (|q| > 1) D lim = n Câu Giá trị lim(2x2 − 3x + 1) x→1 B +∞ A Câu Tính lim x→5 C x2 − 12x + 35 25 − 5x B − A −∞ Câu Tính giới hạn lim x→2 A C x2 − 5x + x−2 B D D +∞ C x+1 Câu Tính lim x→+∞ 4x + B A C D −1 D Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim f (x) = f (a) B lim+ f (x) = lim− f (x) = +∞ x→a x→a C lim+ f (x) = lim− f (x) = a x→a x→a D f (x) có giới hạn hữu hạn x → a x→a Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B 2x + Câu Tính giới hạn lim x→+∞ x + A −1 B x+1 Câu 10 Tính lim x→−∞ 6x − 1 A B D C D C √ Câu 11 [12215d] Tìm m để phương trình x+ A m ≥ B ≤ m ≤ C 1−x2 D √ − 3m + = có nghiệm 3 C ≤ m ≤ D < m ≤ 4 − 4.2 x+ 1−x2 Câu 12 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C D Vô nghiệm Câu 13 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m < B m ≥ C m ≤ D m > Trang 1/5 Mã đề 1 Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = −e − B xy = e + C xy0 = ey − D xy0 = −ey + q Câu 15 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [−1; 0] B m ∈ [0; 1] C m ∈ [0; 2] D m ∈ [0; 4] Câu 14 [3-12217d] Cho hàm số y = ln Câu 16 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 6) B (1; 3; 2) C (2; 4; 3) D (2; 4; 4) Câu 17 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B < m ≤ C < m ≤ D ≤ m ≤ √ Câu 18 [1228d] Cho phương trình (2 log3 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 63 B 64 C 62 D Vô số Câu 19 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D log 2x Câu 20 [1229d] Đạo hàm hàm số y = x2 − log 2x − ln 2x 1 − ln 2x A y0 = B y0 = C y0 = D y0 = 3 x 2x ln 10 2x ln 10 x ln 10 Câu 21 Phát biểu sau sai? A lim qn = với |q| > B lim un = c (Với un = c số) 1 C lim √ = D lim k = với k > n n Câu 22 [3-1132d] Cho dãy số (un ) với un = A lim un = 1 C lim un = cos n + sin n Câu 23 Tính lim n2 + A +∞ B + + ··· + n Mệnh đề sau đúng? n2 + B lim un = D Dãy số un khơng có giới hạn n → +∞ D ! 3n + 2 Câu 24 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D Câu 25 Dãy số sau có giới hạn khác 0? 1 A B √ n n C −∞ C sin n n ! 1 Câu 26 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A +∞ B C Câu 27 Trong khẳng định có khẳng định đúng? D n+1 n D (I) lim nk = +∞ với k nguyên dương Trang 2/5 Mã đề (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B Câu 28 Tính lim C 2n2 − 3n6 + n4 C Câu 29 Trong mệnh đề đây, mệnh đề sai? A A Nếu lim un B Nếu lim un C Nếu lim un D Nếu lim un D B D ! un = a < lim = > với n lim = −∞ v n ! un = a > lim = lim = +∞ = +∞ lim = a > lim(un ) = +∞ ! un = a , lim = ±∞ lim = n−1 Câu 30 Tính lim n +2 A B C D Câu 31 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab 1 B √ C A √ D √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 32 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B C a D [ = 60◦ , S O Câu 33 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ BC) √ với mặt đáy S O = a.√Khoảng cách từ A đến (S √ a 57 2a 57 a 57 A B C D a 57 19 19 17 Câu 34 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a B a C D A 2 Câu 35 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ √ √ √ thẳng BD abc b2 + c2 a b2 + c2 c a2 + b2 b a2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 d = 120◦ Câu 36 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 3a B 2a C 4a D Câu 37 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A 2a B a C D a Trang 3/5 Mã đề Câu 38 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab C √ D √ A B √ a +b a2 + b2 a2 + b2 a2 + b2 3a , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a a 2a A B C D 3 0 0 Câu 40.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D Câu 41 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau Câu 39 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A Cả ba mệnh đề B (II) (III) C (I) (II) D (I) (III) Câu 42 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z B Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z C Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Câu 43 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A Cả ba câu sai B F(x) = G(x) khoảng (a; b) C G(x) = F(x) − C khoảng (a; b), với C số D F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số Câu 44 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) − g(x)]dx = A f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z C k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z D [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R B Câu 45 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] Trang 4/5 Mã đề (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C Câu 46 Z Trong khẳng định sau, khẳng định sai? Z dx = x + C, C số A Z C B Z 0dx = C, C số D D xα dx = xα+1 + C, C số α+1 dx = ln |x| + C, C số x Câu 47 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu B Cả hai câu sai C Chỉ có (I) Câu 48 Hàm số f có nguyên hàm K A f (x) xác định K C f (x) có giá trị lớn K B f (x) có giá trị nhỏ K D f (x) liên tục K D Chỉ có (II) Câu 49 Trong khẳng định sau, khẳng định sai? A Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số B F(x) = − cos x nguyên hàm hàm số f (x) = sin x C Z F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x u0 (x) dx = log |u(x)| + C D u(x) Câu 50 f (x), g(x) liên đề sai? Z Z Cho hàm số Z Z tục R Trong cácZmệnh đề sau, mệnh Z A f (x)g(x)dx = f (x)dx g(x)dx B ( f (x) − g(x))dx = f (x)dx − g(x)dx Z Z Z Z Z C ( f (x) + g(x))dx = f (x)dx + g(x)dx D k f (x)dx = f f (x)dx, k ∈ R, k , - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D D C D C C A C 10 A 11 C 12 A 13 B 16 A B C 18 19 20 D 21 A 23 C 14 15 A 17 B D 22 B D 25 C 24 B 26 B 27 B 28 C 29 B 30 C 31 B 32 A 33 B 34 35 B 36 C 37 D 38 39 D 40 D C D 41 C 42 C 43 C 44 C 45 A 46 47 A 48 49 D 50 A B D ... , - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D D C D C C A C 10 A 11 C 12 A 13 B 16 A B C 18 19 20 D 21 A 23 C 14 15 A 17 B D 22 B D 25

Ngày đăng: 07/03/2023, 10:08

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w