Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Tính giới hạn lim x→+∞ 2x + 1 x + 1 A 2 B 1 2 C −1 D 1 Câu 2 Tính giới hạn lim x→2 x2 − 5x + 6 x − 2 A −1 B[.]
Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi 2x + x→+∞ x + 1 A B 2 x − 5x + Câu Tính giới hạn lim x→2 x−2 A −1 B Câu Tính giới hạn lim C −1 D C D Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim+ f (x) = lim− f (x) = +∞ B f (x) có giới hạn hữu hạn x → a x→a x→a C lim f (x) = f (a) D lim+ f (x) = lim− f (x) = a x→a x→a Câu Tính lim x→+∞ A x−2 x+3 B Câu Giá trị lim (3x2 − 2x + 1) x→1 A B x+2 bằng? Câu Tính lim x→2 x A B 2n − Câu Tính lim 2n + 3n + A B √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 A B 4x + Câu [1] Tính lim bằng? x→−∞ x + A B −4 Câu 10 Giá trị lim(2x − 3x + 1) x→1 A B x→a C − D −3 C +∞ D C D C +∞ D −∞ C 1 D − C D −1 C D +∞ log 2x Câu 11 [1229d] Đạo hàm hàm số y = x2 − ln 2x 1 − log 2x A y0 = B y0 = C y0 = x ln 10 2x ln 10 x3 √ √ D y0 = − ln 2x 2x3 ln 10 − 3m + = có nghiệm 3 C ≤ m ≤ D < m ≤ 4 Câu 13 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B < m ≤ C ≤ m ≤ D < m ≤ Câu 12 [12215d] Tìm m để phương trình x+ A m ≥ B ≤ m ≤ 1−x2 − 4.2 x+ 1−x2 Câu 14 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≤ B m > C m ≥ D m < Trang 1/5 Mã đề 1 − xy = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 + 19 18 11 − 29 11 − 11 − 19 A Pmin = B Pmin = C Pmin = D Pmin = 21 Câu 16 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 2020 B 13 C log2 13 D 2020 Câu 15 [12210d] Xét số thực dương x, y thỏa mãn log3 Câu 17 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≤ B m ≥ C m > D m < 4 4 Câu 18 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x + A xy0 = ey + B xy0 = ey − C xy0 = −ey − D xy0 = −ey + √ Câu 19 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị " nhỏ! biểu thức P" = x!+ 2y thuộc tập đây? 5 ;3 B 2; C (1; 2) D [3; 4) A 2 √ Câu 20 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị ngun dương m để phương trình cho có nghiệm phân biệt? A 63 B 64 C 62 D Vô số Câu 21 Dãy số sau có giới hạn 0? n2 + n + n2 − B u = A un = n 5n − 3n2 (n + 1)2 − 2n n2 − 3n D u = n 5n + n2 n2 ! 3n + 2 Câu 22 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D Câu 23 Tính lim n+3 A B C D 7n − 2n + Câu 24 Tính lim 3n + 2n2 + A B C D - 3 n−1 Câu 25 Tính lim n +2 A B C D + + ··· + n Câu 26 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + A lim un = B Dãy số un khơng có giới hạn n → +∞ C lim un = D lim un = ! 1 Câu 27 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B C D +∞ 2 ! 1 Câu 28 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C D 2 C un = Trang 2/5 Mã đề Câu 29 Phát biểu sau sai? B lim √ = n D lim k = với k > n A lim un = c (Với un = c số) C lim qn = với |q| > Câu 30 Tính lim A cos n + sin n n2 + B −∞ D +∞ C Câu 31 [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b, AA = c Khoảng cách từ điểm A đến đường √ √ √ √ thẳng BD c a2 + b2 abc b2 + c2 b a2 + c2 a b2 + c2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 [ = 60◦ , S O Câu 32 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ A đến (S BC) √ √ a 57 a 57 2a 57 A B C a 57 D 19 17 19 0 0 Câu 33.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D Câu 34 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a B C a D A Câu 35 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ √ a a B C D 2a A a 2 d = 120◦ Câu 36 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A B 4a C 2a D 3a d = 30◦ , biết S BC tam giác Câu 37 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 13 16 26 Câu 38 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng 0 (AB0C) √ √ (A C D) √ √ 2a a a A B C a D 2 Câu 39 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A 2a B a C a D 3a Câu 40 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) 0 0 Trang 3/5 Mã đề √ 2a a a a A B C D 3 Câu 41 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? f (x)dx = A Nếu Z B Nếu Z g(x)dx f (x) = g(x), ∀x ∈ R f (x)dx = Z f (x)dx = Z g(x)dx f (x) , g(x), ∀x ∈ R g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx C Nếu Câu 42 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai ngun hàm D hàm số sai khác hàm số A Câu (III) sai B Câu (I) sai C Câu (II) sai D Khơng có câu sai Câu 43 Mệnh đề sau sai? A F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) B Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Z C Nếu F(x) nguyên hàm f (x) (a; b) C số !0 Z f (x)dx = f (x) D f (x)dx = F(x) + C Câu 44 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có F (x) = f (x), ngồi F (a+ ) = f (a) F (b− ) = f (b) B Với x ∈ (a; b), ta có f (x) = F(x) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 45 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 46 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z B k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z C [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z D f (x)dx = f (x) + C, với f (x) có đạo hàm R A Z Trang 4/5 Mã đề Câu 47 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (II) B Cả hai câu C Chỉ có (I) D Cả hai câu sai Câu 48 Trong khẳng định sau, khẳng định sai? A Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số B F(x) = − cos x nguyên hàm hàm số f (x) = sin x C Z F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x u0 (x) dx = log |u(x)| + C D u(x) Câu 49 đề sai? Z Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z A ( f (x) − g(x))dx = f (x)dx − g(x)dx B ( f (x) + g(x))dx = f (x)dx + g(x)dx Z Z Z Z Z C f (x)g(x)dx = f (x)dx g(x)dx D k f (x)dx = f f (x)dx, k ∈ R, k , Câu 50 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B Cả ba mệnh đề C (II) (III) D (I) (II) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A A C B A D A D 10 A C 11 A 13 B 15 C 12 C 14 C 16 C 17 A 18 19 A 20 21 23 C B D 25 D 24 D 26 D C 28 29 C 30 A C 32 31 A 33 B 34 A 35 B 36 A 37 B 38 39 B 40 A 41 A 42 43 A 44 A 45 49 C 22 27 47 B 46 C B C D D D B 48 D 50 D ... BC tam giác Câu 37 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vuông √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 13 16... (II) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A A C B A D A D 10 A C 11 A 13 B 15 C 12 C 14 C 16 C 17 A 18 19 A 20 21 23 C B D 25 D 24 D