1. Trang chủ
  2. » Tất cả

Ôn thi toán thptqg pdf (176)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 111,05 KB

Nội dung

Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [1] Tính lim x→−∞ 4x + 1 x + 1 bằng? A −4 B 4 C 2 D −1 Câu 2 Tính lim x→5 x2 − 12x + 35 25 − 5x A −∞ B +∞ C[.]

Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi 4x + bằng? x→−∞ x + A −4 B x − 12x + 35 Câu Tính lim x→5 25 − 5x Câu [1] Tính lim A −∞ Câu Tính lim x→1 A x3 − x−1 C D −1 B +∞ C − D B +∞ C −∞ D C D Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A −1 + sin 2x B −1 + sin x cos x C − sin 2x D + sin 2x 2n − Câu Tính lim 2n + 3n + A B −∞ C D +∞ x+1 Câu Tính lim x→+∞ 4x + 1 A B C D Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim+ f (x) = f (a) lim− f (x) = f (b) B lim+ f (x) = f (a) lim+ f (x) = f (b) x→a x→b x→a x→b C lim− f (x) = f (a) lim− f (x) = f (b) 2n + Câu Tìm giới hạn lim n+1 A B x−2 Câu 10 Tính lim x→+∞ x + A B − x→a x→b x→a x→b D lim− f (x) = f (a) lim+ f (x) = f (b) C D C −3 D Câu 11 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 13 B log2 2020 C 2020 D log2 13 Câu 12 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B Vô nghiệm C D q Câu 13 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 2] B m ∈ [−1; 0] C m ∈ [0; 1] D m ∈ [0; 4] Câu 14 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≤ B m ≥ C m < D m > 4 4 Trang 1/5 Mã đề Câu 15 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A Vô số B C D Câu 16 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C Vơ nghiệm D log(mx) = có nghiệm thực log(x + 1) C m < ∨ m = D m < ∨ m > Câu 17 [1226d] Tìm tham số thực m để phương trình A m ≤ B m < √ √ − 3m + = có nghiệm C < m ≤ D m ≥ Câu 19 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B < m ≤ C ≤ m ≤ D ≤ m ≤ Câu 18 [12215d] Tìm m để phương trình x+ A ≤ m ≤ B ≤ m ≤ 4 1−x2 − 4.2 x+ 1−x2 Câu 20 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b D A B C 2 ! 1 Câu 21 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C D 2 7n2 − 2n3 + Câu 22 Tính lim 3n + 2n2 + D A B C - 3 + + ··· + n Câu 23 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + 1 A lim un = B Dãy số un giới hạn n → +∞ C lim un = D lim un = Câu 24 Phát biểu sau sai? A lim k = với k > n C lim un = c (Với un = c số) cos n + sin n n2 + B −∞ n−1 Câu 26 Tính lim n +2 A B Câu 25 Tính lim A Câu 27 Dãy số sau có giới hạn 0? − 2n n2 − 3n B u = A un = n 5n + n2 n2 2n2 − Câu 28 Tính lim 3n + n4 A B B lim qn = với |q| > 1 D lim √ = n C +∞ D C D C un = C n2 + n + (n + 1)2 D un = n2 − 5n − 3n2 D Trang 2/5 Mã đề Câu 29 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A +∞ B C 1 1 Câu 30 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B C +∞ 2 un D −∞ ! D 3a , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a 2a a a A B C D 3 Câu 31 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = d = 120◦ Câu 32 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a C 4a D 3a A 2a B Câu 33 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ b a2 + c2 abc b2 + c2 a b2 + c2 c a2 + b2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 d = 30◦ , biết S BC tam giác Câu 34 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 16 26 13 Câu 35 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a A a B C D a 3 [ = 60◦ , S O Câu 36 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ √ BC) √ với mặt đáy S O = a Khoảng cách từ O đến (S √ 2a 57 a 57 a 57 B a 57 D C A 19 17 19 [ = 60◦ , S O Câu 37 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ A đến (S √ BC) √ 2a 57 a 57 a 57 A B C D a 57 19 17 19 Câu 38 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab A √ B √ C √ D a + b2 a2 + b2 a2 + b2 a2 + b2 √ Câu 39 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ a 38 3a 3a 38 3a 58 A B C D 29 29 29 29 Trang 3/5 Mã đề Câu 40 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A a B C a D 2a Câu 41 Z Các khẳng định sau Z sai? Z Z A Z C f (x)dx = F(x) +C ⇒ !0 f (x)dx = f (x) f (u)dx = F(u) +C B k f (x)dx = k Z D f (x)dx, k số Z f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C Câu 42 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A G(x) = F(x) − C khoảng (a; b), với C số B F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số C F(x) = G(x) khoảng (a; b) D Cả ba câu sai Câu 43 Z Trong khẳng định sau, khẳng định sai? Z dx = ln |x| + C, C số B dx = x + C, C số A x Z Z xα+1 α C 0dx = C, C số D x dx = + C, C số α+1 Câu 44 Hàm số f có nguyên hàm K A f (x) có giá trị lớn K C f (x) có giá trị nhỏ K B f (x) xác định K D f (x) liên tục K Câu 45 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (II) B Chỉ có (I) C Cả hai câu sai D Cả hai câu Câu 46 Trong khẳng định sau, khẳng định sai? A F(x) = − cos x nguyên hàm hàm số f (x) = sin x B F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x C Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Z u0 (x) dx = log |u(x)| + C D u(x) Câu 47 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có f (x) = F(x) D Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) Câu 48 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn Trang 4/5 Mã đề (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai B Chỉ có (I) C Chỉ có (II) D Cả hai sai Câu 49 đề sau sai? Z [1233d-2] Mệnh Z A k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z B [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z Z Z C [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z D f (x)dx = f (x) + C, với f (x) có đạo hàm R Câu 50 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 B D A D D B A D 10 A 11 D 12 13 B D 16 A C 17 18 A B 21 C 20 C 22 C 23 A 24 25 A 26 A 27 A 28 29 B 30 31 B 32 33 35 B B D B 34 C B D 36 A 37 A 39 D 14 A 15 19 C 38 D B 40 A 41 A 42 A 43 D 44 D 45 D 46 D 47 D 48 49 A 50 C B ... + c2 a2 + b2 + c2 d = 30◦ , biết S BC tam giác Câu 34 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39... D - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 B D A D D B A D 10 A 11 D 12 13 B D 16 A C 17 18 A B 21 C 20 C 22 C 23 A 24 25 A 26 A 27 A

Ngày đăng: 07/03/2023, 09:26

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w