Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Giá trị giới hạn lim x→−1 (x2 − x + 7) bằng? A 5 B 0 C 7 D 9 Câu 2 Dãy số nào có giới hạn bằng 0? A un = ([.]
Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B C D n3 − 3n C un = n+1 !n −2 D un = B C +∞ D B −∞ C +∞ D B −3 C − D C −4 D −1 C −3 D C D Câu Dãy số !n có giới hạn 0? B un = n2 − 4n A un = Câu Giá trị lim (3x2 − 2x + 1) x→1 A x3 − x−1 Câu Tính lim x→1 A Câu Tính lim x→+∞ x−2 x+3 A Câu [1] Tính lim x→−∞ A Câu Tính lim A +∞ x→3 4x + bằng? x+1 B x2 − x−3 B 2x + Câu Tính giới hạn lim x→+∞ x + 1 A −1 B Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim f (x) = f (a) B f (x) có giới hạn hữu hạn x → a x→a C lim+ f (x) = lim− f (x) = +∞ x→a x→a Câu 10 [1] Tính lim A +∞ x→3 x−3 bằng? x+3 B −∞ D lim+ f (x) = lim− f (x) = a x→a C x→a D Câu 11 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 2020 B log2 13 C log2 2020 D 13 Câu 12 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 3) B (1; 3; 2) C (2; 4; 4) D (2; 4; 6) Trong khẳng định sau đây, khẳng định đúng? x + B xy0 = ey + C xy0 = ey − D xy0 = −ey + Câu 13 [3-12217d] Cho hàm số y = ln A xy0 = −ey − Câu 14 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≥ B m < C m ≤ D m > Trang 1/5 Mã đề Câu 15 [12213d] Có giá trị nguyên m để phương trình nhất? A B 3|x−1| C = 3m − có nghiệm D Câu 16 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B Vô nghiệm C D √ Câu 17 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 62 B Vô số C 64 D 63 Câu 18 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A Vô nghiệm B C D √ Câu 19 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị " nhỏ! biểu thức P = x + 2y thuộc tập đây? " ! 5 A ;3 B [3; 4) C (1; 2) D 2; 2 q Câu 20 [12216d] Tìm tất giá trị thực tham số m để phương trình log23 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 4] B m ∈ [0; 2] C m ∈ [−1; 0] D m ∈ [0; 1] 2n − Câu 21 Tính lim 3n + n4 A B C D Câu 22 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D ! 3n + 2 Câu 23 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D un Câu 24 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A −∞ B +∞ C D Câu 25 Phát biểu sau sai? A lim √ = n n C lim q = với |q| > B lim Câu 26 Dãy số sau có giới hạn khác 0? 1 A B √ n n C n+1 n D sin n n C D 12 + 22 + · · · + n2 n3 B = với k > nk D lim un = c (Với un = c số) Câu 27 [3-1133d] Tính lim A +∞ Trang 2/5 Mã đề 1 1 Câu 28 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n C A +∞ B Câu 29 Tính lim n+3 A B C n−1 Câu 30 Tính lim n +2 A B C ! D D D Câu 31 [2] Cho hình chóp S ABCD có đáy hình vuông cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a A B C a D a 2 0 0 Câu 32.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a B C D A Câu 33 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a B a D A C √ Câu 34 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ a 38 3a 58 3a 3a 38 B C D A 29 29 29 29 3a Câu 35 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a 2a a B C D A 3 Câu 36 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a B C D a A 2 [ = 60◦ , S O Câu 37 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a.√Khoảng cách từ A đến (S BC) √ √ a 57 2a 57 a 57 A B C a 57 D 17 19 19 d = 120◦ Câu 38 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 3a B 4a C D 2a Câu 39 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C) (A0C D) √ √ √ √ a a 2a A a B C D 2 Trang 3/5 Mã đề Câu 40 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a B a C A a D 2a Câu 41 Cho Z hai hàm yZ= f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z C Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R A Nếu f (x)dx = Câu 42 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai sai B Chỉ có (I) C Cả hai D Chỉ có (II) Câu 43 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 44 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A Cả ba mệnh đề B (I) (II) C (I) (III) D (II) (III) Câu 45 khẳng định sau, khẳng định sai? Z Trong u0 (x) A dx = log |u(x)| + C u(x) B F(x) = − cos x nguyên hàm hàm số f (x) = sin x C F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x D Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Câu 46 Hàm số f có nguyên hàm K A f (x) có giá trị lớn K C f (x) liên tục K B f (x) xác định K D f (x) có giá trị nhỏ K Trang 4/5 Mã đề Câu 47 Trong khẳng định sau, khẳng định sai? A Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số √ B F(x) = x nguyên hàm hàm số f (x) = x C Cả ba đáp án D F(x) = x2 nguyên hàm hàm số f (x) = 2x Câu 48 Mệnh đề sau sai? A Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) B F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a;Zb) C Nếu F(x) nguyên hàm f (x) (a; b) C số !0 Z D f (x)dx = f (x) f (x)dx = F(x) + C Câu 49 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu sai B Chỉ có (I) C Chỉ có (II) D Cả hai câu Câu 50 Z Trong khẳng định sau, khẳng định sai? Z dx = x + C, C số A Z C 0dx = C, C số dx = ln |x| + C, C số Z x xα+1 D xα dx = + C, C số α+1 B - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D A B A 11 D A B D C 10 C D 12 B 13 C 14 A 15 C 16 A 17 A 18 C 19 A 20 C 21 B 22 B D 23 C 24 25 C 26 C 27 C 28 C D 29 A 30 31 A 32 C 33 A 34 C 35 D 36 37 B 38 39 B 40 A 41 C 42 43 C 44 45 A 47 49 D C D B 46 48 B D 50 C B D ... B - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D A B A 11 D A B D C 10 C D 12 B 13 C 14 A 15 C 16 A 17 A 18 C 19 A 20 C 21 B 22 B D 23 C