Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Tính lim 2n − 3 2n2 + 3n + 1 bằng A +∞ B −∞ C 1 D 0 Câu 2 Tính lim x→3 x2 − 9 x − 3 A −3 B 3 C 6 D +∞ Câu 3[.]
Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi Câu Tính lim A +∞ 2n − 2n2 + 3n + B −∞ C D C D +∞ C D C −1 D Câu Tính lim x→3 A −3 x −9 x−3 B x2 − 5x + x→2 x−2 A −1 B 2−n Câu Giá trị giới hạn lim n+1 A B Câu Tính giới hạn lim Câu Phát biểu sau sai? A lim k = n C lim un = c (un = c số) Câu Tính lim x→5 A B lim qn = (|q| > 1) D lim = n x2 − 12x + 35 25 − 5x C +∞ B −∞ D − Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 D Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ A lim [ f (x) − g(x)] = a − b x→+∞ f (x) a C lim = x→+∞ g(x) b x→+∞ Câu !Dãy số sau có giới !n hạn 0? n A B e √ x2 + 3x + Câu 10 Tính giới hạn lim x→−∞ 4x − 1 A − B B lim [ f (x)g(x)] = ab x→+∞ D lim [ f (x) + g(x)] = a + b x→+∞ !n C − C !n D D Câu 11 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C Vô số D Câu 12 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≥ B m < C m > D m ≤ 4 4 Trang 1/5 Mã đề Câu 13 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị nhỏ biểu thức P = x + 2y thuộc tập " đây? ! " ! 5 A (1; 2) B [3; 4) C 2; D ;3 2 Câu 14 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B Vô nghiệm C √ ab D Câu 15 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 13 B 13 C 2020 D log2 2020 Câu 16 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 √ Câu 17 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 63 B 62 C Vơ số D 64 Câu 18 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m < B m > C m ≤ D m ≥ Câu 19 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B ≤ m ≤ C ≤ m ≤ D < m ≤ log(mx) = có nghiệm thực Câu 20 [1226d] Tìm tham số thực m để phương trình log(x + 1) A m < B m < ∨ m > C m ≤ D m < ∨ m = 12 + 22 + · · · + n2 n3 A +∞ B cos n + sin n Câu 22 Tính lim n2 + A B +∞ ! 1 Câu 23 Tính lim + + ··· + 1.2 2.3 n(n + 1) Câu 21 [3-1133d] Tính lim A B Câu 24 Dãy số sau có giới hạn khác 0? n+1 A B √ n n C D C D −∞ C D D n C sin n n Câu 25 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D Trang 2/5 Mã đề ! 3n + 2 Câu 26 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D n−1 Câu 27 Tính lim n +2 A B C D + + ··· + n Câu 28 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + 1 B lim un = A lim un = C Dãy số un giới hạn n → +∞ D lim un = Câu 29 Phát biểu sau sai? A lim √ = n C lim qn = với |q| > Câu 30 Tính lim n+3 A B = với k > nk D lim un = c (Với un = c số) B lim C D 3a , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a a 2a A B C D 3 Câu 32 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a C D A a B Câu 33 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ a 2a a A B C a D 2 Câu 34 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab 1 A B √ C √ D √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 31 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = Câu 35 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) a 8a 2a 5a A B C D 9 9 Câu 36 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 1 ab ab A √ B √ C √ D a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 37 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) Trang 3/5 Mã đề √ √ a a B a C D 0 0 Câu 38.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a B C D A Câu 39 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a A a B C D a 2 √ A 2a √ Câu 40 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S√B a a a B C a D A Câu 41 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu sai B Chỉ có (I) C Cả hai câu D Chỉ có (II) Câu 42 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có F (x) = f (x), ngồi F (a+ ) = f (a) F (b− ) = f (b) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có f (x) = F(x) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 43 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) khoảng (a; b) B Cả ba câu sai C F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số D G(x) = F(x) − C khoảng (a; b), với C số Câu 44 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? ( f (x) + g(x))dx = A Z C ( f (x) − g(x))dx = f (x)dx + Z g(x)dx B Z f (x)dx − Z g(x)dx D f (x)g(x)dx = f (x)dx g(x)dx Z k f (x)dx = f f (x)dx, k ∈ R, k , Câu 45 Trong khẳng định sau, khẳng định sai? A F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x B Z F(x) = − cos x nguyên hàm hàm số f (x) = sin x u0 (x) C dx = log |u(x)| + C u(x) D Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Câu 46 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? Trang 4/5 Mã đề (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có nguyên hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (III) sai B Câu (I) sai C Khơng có câu D Câu (II) sai sai Câu 47 Z Trong khẳng định sau, khẳng định sai? Z xα+1 dx = ln |x| + C, C số B xα dx = + C, C số A α+1 Z x Z 0dx = C, C số C dx = x + C, C số D Câu 48 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B (II) (III) C Cả ba mệnh đề Câu 49 ! định sau sai? Z Các khẳng f (x)dx = f (x) A Z C f (x)dx = F(x) +C ⇒ Z B Z f (u)dx = F(u) +C D Z k f (x)dx = k D (I) (II) Z f (x)dx, k số Z f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C Câu 50 !0 sau sai? Z Mệnh đề f (x)dx = f (x) A B Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) C F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a;Zb) D Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 D A C C B A B 11 D 10 A D 14 15 A B 18 D 20 D 21 B 22 A 23 B 24 A 25 D 26 A 27 A 28 A 29 C 31 30 A D 33 A B C 37 39 B 41 C 43 49 32 B 34 B 36 C 38 C 40 C 42 A D 45 47 C 16 A 19 A 35 D 12 B 13 17 C 44 46 C B C 48 B 50 C D C ... trình 12. 3 x + 3.15 x − x = 20 A B Vô nghiệm C √ ab D Câu 15 [122 21d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 13 B 13 C 2020 D log2 2020 Câu 16 [122 18d]... 2) = m có nghiệm thực x≥1 A m < B m > C m ≤ D m ≥ Câu 19 [122 14d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B ≤ m ≤ C ≤ m ≤ D < m ≤ log(mx) = có nghiệm thực Câu 20 [122 6d] Tìm... Câu 17 [122 8d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 63 B 62 C Vô số D 64 Câu 18 [122 5d] Tìm