1. Trang chủ
  2. » Tất cả

Đề trắc nghiệm toán 12 pdf (9)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 114,09 KB

Nội dung

Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Tính giới hạn lim x→−∞ √ x2 + 3x + 5 4x − 1 A 1 B 1 4 C − 1 4 D 0 Câu 2 Tính giới hạn lim x→2 x2 − 5x + 6 x[.]

Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi √ x2 + 3x + x→−∞ 4x − 1 B Câu Tính giới hạn lim A x2 − 5x + x→2 x−2 A B −1 2n + Câu Tính giới hạn lim 3n + A B 2 C − D C D D Câu Tính giới hạn lim Câu Dãy số có giới hạn 0? n3 − 3n A un = B un = n2 − 4n n+1 − 2n bằng? 3n + 1 A B 3 2x + Câu Tính giới hạn lim x→+∞ x + 1 A B 2 C !n C un = !n −2 D un = C D − C −1 D !n C !n D − Câu [1] Tính lim Câu !Dãy số sau có giới !n hạn 0? n B A e Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 B Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm x0 hàm số liên tục điểm 4x + bằng? x→−∞ x + A B −1 2n + Câu 10 Tìm giới hạn lim n+1 A B Câu [1] Tính lim C −4 D C D Câu 11 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (1; 3; 2) B (2; 4; 4) C (2; 4; 6) D (2; 4; 3) Câu 12 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m < B m ≥ C m > D m ≤ Trang 1/5 Mã đề Câu 13 [12213d] Có giá trị nguyên m để phương trình nhất? A 3|x−1| = 3m − có nghiệm B C D log(mx) Câu 14 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < B m < ∨ m > C m < ∨ m = D m ≤ − xy = 3xy + x + 2y − Tìm giá trị nhỏ Câu 15 [12210d] Xét số thực dương x, y thỏa mãn log3 x + 2y Pmin P = x√+ y √ √ √ 11 − 18 11 − 29 11 − 19 11 + 19 B Pmin = C Pmin = D Pmin = A Pmin = 21 √ Câu 16 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A Vô số B 64 C 62 D 63 √ √ Câu 17 [12215d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm A ≤ m ≤ B ≤ m ≤ C m ≥ D < m ≤ 4 √ Câu 18 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị nhỏ biểu thức P = x + 2y thuộc tập " đây? ! " ! 5 A [3; 4) B (1; 2) C 2; ;3 D 2 Trong khẳng định sau đây, khẳng định đúng? Câu 19 [3-12217d] Cho hàm số y = ln x + A xy0 = −ey − B xy0 = −ey + C xy0 = ey − D xy0 = ey + 2 Câu 20 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C Vô số D Câu 21 Phát biểu sau sai? A lim k = với k > n C lim √ = n B lim qn = với |q| > D lim un = c (Với un = c số) + + ··· + n Câu 22 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + A lim un = B lim un = 1 C lim un = D Dãy số un khơng có giới hạn n → +∞ ! 1 Câu 23 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B +∞ C D 2 7n − 2n + Câu 24 Tính lim 3n + 2n2 + A - B C D 3 ! 1 Câu 25 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C D 2 Trang 2/5 Mã đề Câu 26 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un B Nếu lim un = a > lim = lim = +∞ ! un = C Nếu lim un = a , lim = ±∞ lim ! un D Nếu lim un = a < lim = > với n lim = −∞ un Câu 27 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A −∞ B C D +∞ Câu 28 Dãy số sau có giới hạn 0? n2 − 3n n2 + n + A un = B u = n n2 (n + 1)2 cos n + sin n Câu 29 Tính lim n2 + A B +∞ 2n − Câu 30 Tính lim 3n + n4 A B C un = C −∞ C − 2n 5n + n2 D un = n2 − 5n − 3n2 D D [ = 60◦ , S O Câu 31 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a.√Khoảng cách từ O đến (S BC) √ √ a 57 2a 57 a 57 A B C a 57 D 17 19 19 Câu 32 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab A √ B √ C D √ a +b a2 + b2 a2 + b2 a2 + b2 √ Câu 33 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 58 a 38 3a 3a 38 B C D A 29 29 29 29 Câu 34 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab 1 A C √ D √ B √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 35 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B C a D 2 3a Câu 36 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ 2a a a a A B C D 3 Trang 3/5 Mã đề d = 120◦ Câu 37 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a C 4a D 2a A 3a B [ = 60◦ , S O Câu 38 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a Khoảng cách từ A đến (S √ BC) √ √ 2a 57 a 57 a 57 A B a 57 C D 19 19 17 Câu 39 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ √ a a A a B C 2a D Câu 40 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C) (A0C D) √ √ √ √ 2a a a B A a C D 2 Câu 41 Trong khẳng định sau, khẳng định sai? A F(x) = − cos x nguyên hàm hàm số f (x) = sin x B Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số C Z F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x u0 (x) dx = log |u(x)| + C D u(x) Câu 42 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (II) B Chỉ có (I) C Cả hai câu D Cả hai câu sai Câu 43 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) khoảng (a; b) B G(x) = F(x) − C khoảng (a; b), với C số C F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số D Cả ba câu sai Câu 44 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B (I) (II) C Cả ba mệnh đề D (I) (III) Trang 4/5 Mã đề Câu 45 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có nguyên hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (I) sai B Không có câu C Câu (III) sai D Câu (II) sai sai Câu 46 Z Các khẳng định sau Z sai? Z Z A f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C B f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C !0 Z Z Z C k f (x)dx = k f (x)dx, k số D f (x)dx = f (x) Câu 47 f (x), g(x) liên đề sai? Z Z Cho hàm số Z Z tục R Trong cácZmệnh đề sau, mệnh Z A f (x)g(x)dx = f (x)dx g(x)dx B ( f (x) − g(x))dx = f (x)dx − g(x)dx Z Z Z Z Z C k f (x)dx = f f (x)dx, k ∈ R, k , D ( f (x) + g(x))dx = f (x)dx + g(x)dx Câu 48 Z [1233d-2] Mệnh đề sau sai? f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z B k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z C [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z Z Z D [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R A Câu 49 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z D Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Câu 50 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai B Chỉ có (I) C Chỉ có (II) D Cả hai sai - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 C C D B D B D A A 10 B 12 B C 11 13 B 14 C 15 B 16 C 17 A C 19 21 D 20 D 22 B 23 18 C 24 A 25 A 26 27 C D 33 A C D 32 D B 36 A 37 B 38 A 39 B 40 41 C 30 34 35 B 28 29 A 31 C D D 42 43 B 44 45 B 46 A 47 A 48 49 A 50 C B B C ...Câu 13 [122 13d] Có giá trị nguyên m để phương trình nhất? A 3|x−1| = 3m − có nghiệm B C D log(mx) Câu 14 [122 6d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1)... trình cho có nghiệm phân biệt? A Vô số B 64 C 62 D 63 √ √ Câu 17 [122 15d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm A ≤ m ≤ B ≤ m ≤ C m ≥ D < m ≤ 4 √ Câu 18 [122 20d-2mh202047]... hai sai - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 C C D B D B D A A 10 B 12 B C 11 13 B 14 C 15 B 16 C 17 A C 19 21 D 20 D 22 B 23 18 C

Ngày đăng: 07/03/2023, 07:59

w