Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Tính lim 2n − 3 2n2 + 3n + 1 bằng A 0 B 1 C +∞ D −∞ Câu 2 Tính lim x→2 x + 2 x bằng? A 3 B 2 C 1 D 0 Câu 3[.]
Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi 2n − 2n2 + 3n + A B x+2 Câu Tính lim bằng? x→2 x A B Câu Tính lim C +∞ D −∞ C D Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ f (x) a = x→+∞ g(x) b D lim [ f (x) + g(x)] = a + b A lim [ f (x)g(x)] = ab B lim x→+∞ C lim [ f (x) − g(x)] = a − b x→+∞ x→+∞ Câu Phát biểu sau sai? A lim k = n C lim qn = (|q| > 1) √ Câu Tính giới hạn lim x→−∞ A − B lim un = c (un = c số) = n D lim x2 + 3x + 4x − B x−3 bằng? x→3 x + A B −∞ x−2 Câu Tính lim x→+∞ x + C D C D +∞ C D − C − D C D !n C e !n D Câu [1] Tính lim A B −3 Câu [1] Tính lim A − n2 bằng? 2n2 + 1 B Câu Tính giới hạn lim x→2 A −1 x2 − 5x + x−2 B Câu 10 Dãy !n số sau có giới !n hạn 0? 5 A − B 3 log 2x x2 − ln 2x − ln 2x B y0 = C y0 = x ln 10 2x3 ln 10 Câu 11 [1229d] Đạo hàm hàm số y = A y0 = − log 2x x3 √ Câu 12 [12215d] Tìm m để phương trình x+ 3 A ≤ m ≤ B < m ≤ 4 1−x2 √ − 4.2 x+ 1−x2 C m ≥ D y0 = 2x3 ln 10 − 3m + = có nghiệm D ≤ m ≤ Trang 1/5 Mã đề Câu 13 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Câu 14 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 6) B (2; 4; 4) C (1; 3; 2) D (2; 4; 3) √ Câu 15 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 63 B 62 C 64 D Vô số Trong khẳng định sau đây, khẳng định đúng? Câu 16 [3-12217d] Cho hàm số y = ln x+1 y y A xy = e − B xy = −e − C xy0 = ey + D xy0 = −ey + Câu 17 [12213d] Có giá trị nguyên m để phương trình nhất? A B 3|x−1| = 3m − có nghiệm C D q Câu 18 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 1] B m ∈ [0; 4] C m ∈ [−1; 0] D m ∈ [0; 2] Câu 19 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B Vô nghiệm C D 1 − xy = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x + √ √ √ √ y 11 − 11 − 19 11 + 19 18 11 − 29 B Pmin = C Pmin = D Pmin = A Pmin = 21 9 ! 1 Câu 21 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B +∞ C D 2 Câu 20 [12210d] Xét số thực dương x, y thỏa mãn log3 Câu 22 Tính lim A 2n2 − 3n6 + n4 B D ! 3n + 2 Câu 23 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D 7n2 − 2n3 + 3n3 + 2n2 + A B - Câu 25 Tính lim n+3 A B C Câu 24 Tính lim D C D C Trang 2/5 Mã đề Câu 26 Dãy số sau có giới hạn 0? − 2n n2 + n + B un = A un = (n + 1) 5n + n2 Câu 27 Phát biểu sau sai? A lim k = với k > n C lim √ = n n−1 Câu 28 Tính lim n +2 A B C un = n2 − 5n − 3n2 B −∞ Câu 30 Dãy số sau có giới hạn khác 0? n+1 A B √ n n n2 − 3n n2 B lim un = c (Với un = c số) D lim qn = với |q| > C Câu 29 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A D un = C C sin n n D un D +∞ D n 0 0 Câu 31.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D 2 d = 120◦ Câu 32 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a C 2a D 4a A 3a B 3a Câu 33 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a 2a a B C D A 3 Câu 34 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ a 2a a A B a D C 2 Câu 35 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC 1 ab ab A √ B √ C D √ a +b a2 + b2 a2 + b2 a2 + b2 √ Câu 36 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ a 38 3a 3a 38 3a 58 A B C D 29 29 29 29 Câu 37 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ a a A B 2a C a D Trang 3/5 Mã đề Câu 38 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) a 2a 5a 8a B C D A 9 9 Câu 39 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ √ √ √ thẳng BD abc b2 + c2 b a2 + c2 c a2 + b2 a b2 + c2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 [ = 60◦ , S O Câu 40 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ A đến (S BC) √ √ 2a 57 a 57 a 57 A B C a 57 D 19 19 17 Câu 41 Z Trong khẳng định sau, khẳng định sai? Z dx = ln |x| + C, C số A dx = x + C, C số B x Z Z xα+1 C xα dx = + C, C số D 0dx = C, C số α+1 Câu 42 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? f (x)dx = A Nếu Z g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z D Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R B Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Câu 43 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (I) B Cả hai câu sai C Cả hai câu D Chỉ có (II) Câu 44 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (II) sai B Câu (I) sai C Câu (III) sai D Khơng có câu sai Câu 45 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có f (x) = F(x) C Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) D Với x ∈ [a; b], ta có F (x) = f (x) Trang 4/5 Mã đề Câu 46 Z Các khẳng định sau Z sai? A Z C Z f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C B f (x)dx = F(x) + C ⇒ !0 Z Z k f (x)dx = k f (x)dx, k số D f (x)dx = f (x) Z f (t)dt = F(t) + C Câu 47 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B (I) (III) C (II) (III) D Cả ba mệnh đề Câu 48 f (x), g(x) liên Z Cho hàm số Z Z tục R Trong cácZmệnh đề sau, mệnh Z đề sai? A f (x)g(x)dx = f (x)dx g(x)dx B k f (x)dx = f f (x)dx, k ∈ R, k , Z Z Z Z Z Z C ( f (x) + g(x))dx = f (x)dx + g(x)dx D ( f (x) − g(x))dx = f (x)dx − g(x)dx Câu 49 Trong khẳng định sau, khẳng định sai? A Z F(x) = − cos x nguyên hàm hàm số f (x) = sin x u0 (x) B dx = log |u(x)| + C u(x) C Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số D F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x Câu 50 Hàm số f có nguyên hàm K A f (x) có giá trị lớn K C f (x) có giá trị nhỏ K B f (x) xác định K D f (x) liên tục K - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A B A C C D 10 A 12 A B 13 A 15 C A 11 B 14 A B 16 A 17 A 18 19 A 20 C 21 C B C 22 23 B 24 B 25 B 26 B 27 D 29 28 C 30 A 31 A 32 D 33 35 B 34 A B 36 A 37 D 38 A 39 A 40 A 41 C 42 A 43 C 44 45 C 46 A 47 A 49 C D 48 A 50 B D ... 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 1] B m ∈ [0; 4] C m ∈ [−1; 0] D m ∈ [0; 2] Câu 19 [122 12d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B Vô nghiệm C D 1 − xy =... [3 -122 17d] Cho hàm số y = ln x+1 y y A xy = e − B xy = −e − C xy0 = ey + D xy0 = −ey + Câu 17 [122 13d] Có giá trị nguyên m để phương trình nhất? A B 3|x−1| = 3m − có nghiệm C D q Câu 18 [122 16d]... liên tục K - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A B A C C D 10 A 12 A B 13 A 15 C A 11 B 14 A B 16 A 17 A 18 19 A 20 C 21 C B C 22