1. Trang chủ
  2. » Tất cả

Ôn tập toán thptqg pdf (134)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 112,17 KB

Nội dung

Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Phát biểu nào trong các phát biểu sau là đúng? A Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại[.]

Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 D Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm 2x + Câu Tính giới hạn lim x→+∞ x + 1 B C A Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A − sin 2x B −1 + sin 2x C + sin 2x Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B Câu Giá trị lim (3x − 2x + 1) x→1 A B √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 B − A 4 x−3 Câu [1] Tính lim bằng? x→3 x + A +∞ B D −1 D −1 + sin x cos x C D C D +∞ C D C D −∞ Câu Giá trị lim(2x2 − 3x + 1) x→1 A B C +∞ D 2n + Câu Tính giới hạn lim 3n + A B C D 2 x+1 Câu 10 Tính lim x→+∞ 4x + 1 A B C D x x x Câu 11 [12211d] Số nghiệm phương trình 12.3 + 3.15 − = 20 A B C D Vô nghiệm log 2x Câu 12 [1229d] Đạo hàm hàm số y = x2 − ln 2x − log 2x − ln 2x A y0 = C y0 = B y0 = D y0 = 3 2x ln 10 x x ln 10 2x ln 10 Câu 13 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B < m ≤ C ≤ m ≤ D ≤ m ≤ Câu 14 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≤ B m ≥ C m > D m < 4 4 Trang 1/5 Mã đề Câu 15 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Câu 16 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A Vô nghiệm B C D √ Câu 17 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 64 B 62 C Vô số D 63 Trong khẳng định sau đây, khẳng định đúng? Câu 18 [3-12217d] Cho hàm số y = ln x+1 y y A xy = −e + B xy = e − C xy0 = −ey − D xy0 = ey + Câu 19 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A Vô số B C D Câu 20 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 2020 B log2 13 C 2020 D 13 Câu 21 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un B Nếu lim un C Nếu lim un D Nếu lim un ! un = −∞ = a < lim = > với n lim v n ! un = = a , lim = ±∞ lim !vn un = a > lim = lim = +∞ = +∞ lim = a > lim(un ) = +∞ Câu 22 Dãy số sau có giới hạn 0? n2 + n + 1 − 2n A un = B u = n (n + 1)2 5n + n2 n2 − 3n C un = n2 n2 − D un = 5n − 3n2 Câu 23 Dãy số sau có giới hạn khác 0? n+1 B A n n C √ n D C D C D D Câu 24 Tính lim n+3 A n−1 Câu 25 Tính lim n +2 A Câu 26 Tính lim + 1.2 A B B ! 1 + ··· + 2.3 n(n + 1) B 7n2 − 2n3 + Câu 27 Tính lim 3n + 2n2 + A - B cos n + sin n Câu 28 Tính lim n2 + A B +∞ C sin n n C D C D −∞ Trang 2/5 Mã đề 2n2 − Câu 29 Tính lim 3n + n4 A B C D Câu 30 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D Câu 31 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a B a C a D 2a A 3a , hình chiếu vng Câu 32 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a a 2a A B C D 3 [ = 60◦ , S O Câu 33 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ Khoảng cách từ O đến (S √ BC) √ với mặt đáy S O = a √ a 57 a 57 2a 57 B C D a 57 A 19 17 19 d = 120◦ Câu 34 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a D 2a A 3a B 4a C Câu 35 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab 1 A B √ C √ D √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 36 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B C a D Câu 37 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ a a A B 2a C D a 2 Câu 38 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a A B a C a D Trang 3/5 Mã đề d = 30◦ , biết S BC tam giác Câu 39 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 26 16 13 Câu 40 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ a a 2a B C a A D Câu 41 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (II) B Chỉ có (I) C Cả hai D Cả hai sai Câu 42 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? ( f (x) − g(x))dx = A Z C ( f (x) + g(x))dx = f (x)dx − Z f (x)dx + g(x)dx B Z Z g(x)dx D Câu 43 Z Trong khẳng định sau, khẳng định sai? Z dx = x + C, C số A Z C xα+1 + C, C số x dx = α+1 α B Z D f (x)g(x)dx = f (x)dx g(x)dx Z k f (x)dx = f f (x)dx, k ∈ R, k , 0dx = C, C số dx = ln |x| + C, C số x Câu 44 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A Cả ba mệnh đề B (I) (II) C (II) (III) D (I) (III) Câu 45 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z D Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Câu 46 Trong khẳng định sau, khẳng định sai?√ A F(x) = x nguyên hàm hàm số f (x) = x B Cả ba đáp án C Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số D F(x) = x2 nguyên hàm hàm số f (x) = 2x Trang 4/5 Mã đề Câu 47 Z [1233d-2] Mệnh đề sau sai? f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z B k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z C [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z Z Z D [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R A Câu 48 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (II) sai B Khơng có câu C Câu (I) sai D Câu (III) sai sai Câu 49 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A Cả ba câu sai B G(x) = F(x) − C khoảng (a; b), với C số C F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số D F(x) = G(x) khoảng (a; b) Câu 50 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu sai B Cả hai câu C Chỉ có (II) D Chỉ có (I) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 B B A C 14 A 15 A 16 B 19 D 21 C C B C 18 B 20 B 22 B 24 A 25 A 26 27 A 28 A B 30 B 31 C 32 33 C 34 35 D 12 13 A 29 B 10 11 23 D A C A 17 B C D C 36 A B 37 A 38 A 39 D 41 A 43 C 45 A 40 B 42 B 44 B 46 A 47 B 48 B 49 B 50 B ... BC tam giác Câu 39 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vuông √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 26 16... f liên tục D f có nguyên hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (II) sai B Không có câu C Câu (I) sai D Câu (III) sai sai Câu 49 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a;

Ngày đăng: 07/03/2023, 07:21

w