1. Trang chủ
  2. » Tất cả

Ôn tập toán thptqg pdf (1)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 113,58 KB

Nội dung

Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Phát biểu nào trong các phát biểu sau là đúng? A Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại[.]

Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 x+1 Câu Tính lim x→−∞ 6x − 1 A B √ √ 4n2 + − n + Câu Tính lim 2n − 3 A B Câu Giá trị lim (3x2 − 2x + 1) x→1 A B +∞ C D C +∞ D C D C D C D !n −2 C un = !n D un = C −∞ D Câu Giá trị lim(2x2 − 3x + 1) x→1 A +∞ B x+2 bằng? Câu Tính lim x→2 x A B Câu Dãy số có giới hạn 0? n3 − 3n A un = n2 − 4n B un = n+1 Câu Tính lim x→1 A x3 − x−1 B +∞ Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A − sin 2x B + sin 2x C −1 + sin x cos x D −1 + sin 2x 2−n Câu 10 Giá trị giới hạn lim n+1 A B −1 C D log(mx) Câu 11 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m > B m < C m < ∨ m = D m ≤ − xy Câu 12 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 + 19 18 11 − 29 11 − 19 11 − A Pmin = B Pmin = C Pmin = D Pmin = 21 q Câu 13 [12216d] Tìm tất giá trị thực tham số m để phương trình log23 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [−1; 0] B m ∈ [0; 2] C m ∈ [0; 4] D m ∈ [0; 1] Trang 1/5 Mã đề √ √ Câu 14 [12215d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm 3 A < m ≤ B ≤ m ≤ C m ≥ D ≤ m ≤ 4 √ Câu 15 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập " đây? ! 5 C ;3 D [3; 4) A (1; 2) B 2; 2 2 Câu 16 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A Vô nghiệm B C D Câu 17 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B ≤ m ≤ C ≤ m ≤ D < m ≤ log 2x Câu 18 [1229d] Đạo hàm hàm số y = x2 − log 2x 1 − ln 2x − ln 2x 0 B y0 = C y = D y = A y0 = x ln 10 x3 2x3 ln 10 2x3 ln 10 Câu 19 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m > B m ≥ C m < D m ≤ 4 4 x Câu 20 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 +3)−log2 (2020−21−x ) A 13 B log2 2020 C log2 13 D 2020 Câu 21 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B 7n − 2n + 3n3 + 2n2 + B Câu 22 Tính lim A C C - Câu 23 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B −∞ ! 1 Câu 24 Tính lim + + ··· + 1.2 2.3 n(n + 1) A D B n−1 Câu 25 Tính lim n +2 A B C C D un D +∞ D C D ! 3n + 2 + a − 4a = Tổng phần tử Câu 26 Gọi S tập hợp tham số nguyên a thỏa mãn lim n+2 S A B C D 2 2 + + ··· + n Câu 27 [3-1133d] Tính lim n3 A B +∞ C D 3 Trang 2/5 Mã đề Câu 28 Dãy số sau có giới hạn 0? − 2n n2 + n + A un = B u = n 5n + n2 (n + 1)2 C un = n2 − 5n − 3n2 ! 1 + + ··· + 1+2 + + ··· + n B C 2 D un = n2 − 3n n2 Câu 29 [3-1131d] Tính lim A +∞ Câu 30 Dãy số sau có giới hạn khác 0? 1 A √ B n n C n+1 n D D sin n n Câu 31 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ 2a a a B C D a A 2 Câu 32 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A 2a B C a D a d = 30◦ , biết S BC tam giác Câu 33 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 13 26 16 Câu 34 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 8a 5a 2a a A B C D 9 9 3a Câu 35 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ 2a a a a A B C D 3 √ Câu 36 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vuông góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 58 a 38 3a 3a 38 A B C D 29 29 29 29 [ = 60◦ , S O Câu 37 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a Khoảng cách từ A đến (S√BC) √ √ a 57 2a 57 a 57 A B a 57 C D 19 19 17 Câu 38 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B C a D 2 Trang 3/5 Mã đề Câu 39 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a B a C D A a 3 d = 120◦ Câu 40 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a D 2a A 3a B 4a C Câu 41 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z B Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z C Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Câu 42 f (x), g(x) liên đề sai? Z Z Cho hàm số Z Z tục R Trong cácZmệnh đề sau, mệnh Z A f (x)g(x)dx = f (x)dx g(x)dx B ( f (x) − g(x))dx = f (x)dx − g(x)dx Z Z Z Z Z C ( f (x) + g(x))dx = f (x)dx + g(x)dx D k f (x)dx = f f (x)dx, k ∈ R, k , Câu 43 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 44 Trong khẳng định sau, khẳng định sai? A Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số B Z F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x u0 (x) dx = log |u(x)| + C C u(x) D F(x) = − cos x nguyên hàm hàm số f (x) = sin x Câu 45 !0 sau sai? Z Mệnh đề A f (x)dx = f (x) B F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a;Zb) C Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C D Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Câu 46 Trong khẳng định sau, khẳng định sai?√ A F(x) = x nguyên hàm hàm số f (x) = x B F(x) = x2 nguyên hàm hàm số f (x) = 2x Trang 4/5 Mã đề C Cả ba đáp án D Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số Câu 47 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B (I) (III) C Cả ba mệnh đề Câu 48 ! định sau sai? Z Các khẳng A Z C f (x)dx = f (x) Z k f (x)dx = k f (x)dx, k số Câu 49 Hàm số f có nguyên hàm K A f (x) xác định K C f (x) liên tục K Z B Z D D (II) (III) f (x)dx = F(x) + C ⇒ Z f (t)dt = F(t) + C f (x)dx = F(x) +C ⇒ Z f (u)dx = F(u) +C B f (x) có giá trị nhỏ K D f (x) có giá trị lớn K Câu 50 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (II) sai B Khơng có câu C Câu (I) sai sai D Câu (III) sai - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 C B A D D 10 D B D 12 C 13 A C 15 B C 11 B 17 A 14 B 16 B 18 A 19 D 20 C 21 D 22 C 23 A 25 24 A B 26 27 A 28 A 29 D 30 C 32 31 A 33 B B D 34 A 35 A 36 A 37 C 38 C 39 C 40 C 41 D 43 45 42 A 44 C B 46 A 48 47 A 49 C 50 C D B ... giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 13 26 16 Câu 34 [3] Cho khối chóp S ABC có đáy tam giác vuông... n−1 Câu 25 Tính lim n +2 A B C C D un D +∞ D C D ! 3n + 2 + a − 4a = Tổng phần tử Câu 26 Gọi S tập hợp tham số nguyên a thỏa mãn lim n+2 S A B C D 2 2 + + ··· + n Câu 27 [3-1133d] Tính lim n3... thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập " đây? ! 5 C ;3 D [3; 4) A (1; 2) B 2; 2 2 Câu 16 [12211d] Số nghiệm phương trình 12.3 x +

Ngày đăng: 07/03/2023, 06:42

w