Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Tính giới hạn lim x→2 x2 − 5x + 6 x − 2 A −1 B 1 C 5 D 0 Câu 2 Tính lim 2n − 3 2n2 + 3n + 1 bằng A 1 B +∞ C[.]
Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi x2 − 5x + Câu Tính giới hạn lim x→2 x−2 A −1 B C D 2n − Câu Tính lim 2n + 3n + A B +∞ C D −∞ 2n + Câu Tìm giới hạn lim n+1 A B C D 1−n Câu [1] Tính lim bằng? 2n + 1 1 A B C − D Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ f (x) a = A lim [ f (x)g(x)] = ab B lim x→+∞ x→+∞ g(x) b C lim [ f (x) − g(x)] = a − b D lim [ f (x) + g(x)] = a + b x→+∞ x→+∞ Câu Phát biểu sau sai? A lim un = c (un = c số) B lim = n C lim k = D lim qn = (|q| > 1) n x2 − 12x + 35 Câu Tính lim x→5 25 − 5x 2 A − B −∞ C D +∞ 5 Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim− f (x) = f (a) lim+ f (x) = f (b) B lim− f (x) = f (a) lim− f (x) = f (b) x→a x→a x→b x→b C lim+ f (x) = f (a) lim+ f (x) = f (b) D lim+ f (x) = f (a) lim− f (x) = f (b) x→a x→a x→b x→b Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 D Nếu hàm số có đạo hàm x0 hàm số liên tục điểm Câu 10 Giá trị lim(2x2 − 3x + 1) x→1 A +∞ B √ x+ 1−x2 C √ x+ 1−x2 D − 3m + = có nghiệm C < m ≤ D ≤ m ≤ 4 q Câu 12 [12216d] Tìm tất giá trị thực tham số m để phương trình log23 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 1] B m ∈ [0; 4] C m ∈ [−1; 0] D m ∈ [0; 2] Câu 11 [12215d] Tìm m để phương trình A m ≥ B ≤ m ≤ − 4.2 Trang 1/5 Mã đề 1 Câu 13 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B < m ≤ C ≤ m ≤ D ≤ m ≤ Câu 14 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D Câu 15 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 13 B 2020 C 13 D log2 2020 − xy = 3xy + x + 2y − Tìm giá trị nhỏ Câu 16 [12210d] Xét số thực dương x, y thỏa mãn log3 x + 2y Pmin P = x√+ y √ √ √ 11 − 11 + 19 18 11 − 29 11 − 19 A Pmin = B Pmin = C Pmin = D Pmin = 21 Câu 17 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = e + B xy = e − C xy0 = −ey + D xy0 = −ey − Câu 18 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Câu 19 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C D Vô nghiệm Câu 20 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C Vô nghiệm D Câu 21 Tính lim A 2n − 3n6 + n4 B Câu 22 Phát biểu sau sai? A lim k = với k > n C lim qn = với |q| > Câu 23 Dãy số sau có giới hạn khác 0? n+1 A √ B n n C D B lim un = c (Với un = c số) D lim √ = n n ! 3n + 2 Câu 24 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D C sin n n D Câu 25 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D Trang 2/5 Mã đề 1 1 Câu 26 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A +∞ B C cos n + sin n Câu 27 Tính lim n2 + A −∞ B +∞ C ! D D Câu 28 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un B Nếu lim un = a > lim = lim = +∞ ! un = C Nếu lim un = a , lim = ±∞ lim ! un D Nếu lim un = a < lim = > với n lim = −∞ un Câu 29 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A +∞ B C −∞ D Câu 30 Tính lim n+3 A B C D Câu 31 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ 2a a a B a D A C d = 30◦ , biết S BC tam giác Câu 32 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vuông √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 26 16 13 d = 120◦ Câu 33 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 2a B C 4a D 3a Câu 34 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A a B 2a C a D Câu 35 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 2a 5a a 8a A B C D 9 9 Câu 36 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab 1 ab A √ B C √ D √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 37 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD Trang 3/5 Mã đề √ √ a a B a C D Câu 38 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a A a C D B 0 0 Câu 39.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D 2 3a Câu 40 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ 2a a a a A B C D 3 Câu 41 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? √ A a √ (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (I) sai B Câu (II) sai C Khơng có câu D Câu (III) sai sai Câu 42 ! định sau sai? Z Các khẳng f (x)dx = f (x) A Z C Z B f (x)dx = F(x) + C ⇒ Z f (t)dt = F(t) + C D Z Z f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C Z k f (x)dx = k f (x)dx, k số Câu 43 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A Cả ba mệnh đề B (I) (III) C (I) (II) D (II) (III) Câu 44 đề sai? Z Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z A ( f (x) + g(x))dx = f (x)dx + g(x)dx B ( f (x) − g(x))dx = f (x)dx − g(x)dx Z Z Z Z Z C f (x)g(x)dx = f (x)dx g(x)dx D k f (x)dx = f f (x)dx, k ∈ R, k , Câu 45 Trong khẳng định sau, khẳng định sai? A F(x) = x2 nguyên hàm hàm số f (x) = 2x B Cả ba đáp án √ C F(x) = x nguyên hàm hàm số f (x) = x D Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số Trang 4/5 Mã đề Câu 46 Z Trong cácα+1khẳng định sau, khẳng định sai? Z x + C, C số B dx = ln |x| + C, C số A xα dx = α+1 Z Z x C 0dx = C, C số D dx = x + C, C số Câu 47 Trong khẳng định sau, khẳng định sai? A Z F(x) = − cos x nguyên hàm hàm số f (x) = sin x u0 (x) B dx = log |u(x)| + C u(x) C F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x D Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Câu 48 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 49 Cho Z hai hàm yZ= f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z C Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Câu 50 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có F (x) = f (x), ngồi F (a+ ) = f (a) F (b− ) = f (b) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ (a; b), ta có f (x) = F(x) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A C A C B C D D D 10 B 11 B 12 C 13 B 14 C 15 A 16 A 17 B 18 19 B 20 21 A 23 C 29 D B 26 B 28 B 30 B D 36 A D 38 C 39 A 40 A 41 C 42 43 C 44 45 C 46 A 49 D 34 A 35 37 D 32 C 31 C 24 B 27 47 D 22 25 A 33 C B B C 48 C 50 C B ... khác 0? n+1 A √ B n n C D B lim un = c (Với un = c số) D lim √ = n n ! 3n + 2 Câu 24 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D C sin n n D Câu 25... BC tam giác Câu 32 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vuông √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 26 16... đường thẳng S B AD Trang 3/5 Mã đề √ √ a a B a C D Câu 38 [2] Cho hình chóp S ABCD có đáy hình vuông cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a A a C D B 0