1. Trang chủ
  2. » Tất cả

Bài tập toán thpt pdf (4)

12 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 138,12 KB

Nội dung

Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Giá trị của lim x→1 (2x2 − 3x + 1) là A 0 B 2 C +∞ D 1 Câu 2 Phát biểu nào sau đây là sai? A lim un = c (un[.]

Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi Câu Giá trị lim(2x2 − 3x + 1) x→1 A B C +∞ D Câu Phát biểu sau sai? A lim un = c (un = c số) C lim = n 2n + Câu Tìm giới hạn lim n+1 A B C D Câu Dãy !n số sau có giới !n hạn 0? 5 A − B 3 !n C e !n D B lim qn = (|q| > 1) D lim k = n Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim− f (x) = f (a) lim+ f (x) = f (b) B lim+ f (x) = f (a) lim+ f (x) = f (b) x→a x→b x→a x→b C lim+ f (x) = f (a) lim− f (x) = f (b) x→a x→b x→a x→b D lim− f (x) = f (a) lim− f (x) = f (b) Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim+ f (x) = lim− f (x) = +∞ B lim f (x) = f (a) x→a x→a C lim+ f (x) = lim− f (x) = a x→a x→a Câu Tính giới hạn lim x→2 A x2 − 5x + x−2 B −1 x→a D f (x) có giới hạn hữu hạn x → a C D Câu Tính lim A +∞ x→1 x −1 x−1 B −∞ C D 2x + Câu Tính giới hạn lim x→+∞ x + 1 C D A −1 B x−2 Câu 10 Tính lim x→+∞ x + A − B −3 C D Câu 11 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A Vô nghiệm B C D √ Câu 12 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 62 B Vô số C 64 D 63 q Câu 13 [12216d] Tìm tất giá trị thực tham số m để phương trình log23 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [−1; 0] B m ∈ [0; 2] C m ∈ [0; 1] D m ∈ [0; 4] Trang 1/5 Mã đề √ Câu 14 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập " đây? ! 5 A [3; 4) B 2; C ;3 D (1; 2) 2 log 2x Câu 15 [1229d] Đạo hàm hàm số y = x2 − ln 2x 1 − ln 2x − log 2x B y0 = C y0 = D y0 = A y0 = x x ln 10 2x ln 10 2x3 ln 10 Câu 16 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (1; 3; 2) B (2; 4; 6) C (2; 4; 3) D (2; 4; 4) √ Câu 17 [12215d] Tìm m để phương trình x+ A ≤ m ≤ B ≤ m ≤ 4 1−x2 √ − 4.2 x+ 1−x2 − 3m + = có nghiệm C m ≥ D < m ≤ − xy = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x + √ y √ √ √ 18 11 − 29 11 − 19 11 + 19 11 − A Pmin = B Pmin = C Pmin = D Pmin = 21 9 Câu 19 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m > B m ≥ C m ≤ D m < Trong khẳng định sau đây, khẳng định đúng? Câu 20 [3-12217d] Cho hàm số y = ln x + A xy0 = ey + B xy0 = ey − C xy0 = −ey − D xy0 = −ey + ! 3n + 2 Câu 21 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D + + ··· + n Mệnh đề sau đúng? Câu 22 [3-1132d] Cho dãy số (un ) với un = n2 + A Dãy số un giới hạn n → +∞ B lim un = C lim un = D lim un = ! 1 Câu 23 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B C D +∞ 2 Câu 24 Trong khẳng định có khẳng định đúng? Câu 18 [12210d] Xét số thực dương x, y thỏa mãn log3 (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D Câu 25 Phát biểu sau sai? A lim un = c (Với un = c số) C lim qn = với |q| > 1 B lim √ = n D lim k = với k > n Trang 2/5 Mã đề Câu 26 Trong mệnh đề đây, mệnh đề nào!sai? un A Nếu lim un = a , lim = ±∞ lim = !vn un B Nếu lim un = a > lim = lim = +∞ C Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un D Nếu lim un = a < lim = > với n lim = −∞ n−1 Câu 27 Tính lim n +2 A B 2 7n − 2n3 + Câu 28 Tính lim 3n + 2n2 + A - B 12 + 22 + · · · + n2 Câu 29 [3-1133d] Tính lim n3 A B +∞ Câu 30 Dãy số sau có giới hạn 0? − 2n n2 − 3n A un = B u = n 5n + n2 n2 C D D C C C un = D n2 + n + (n + 1)2 D un = n2 − 5n − 3n2 √ Câu 31 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ a 38 3a 3a 58 3a 38 A B C D 29 29 29 29 Câu 32 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 8a 5a a 2a A B C D 9 9 Câu 33 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a A B a C D a 3 d = 120◦ Câu 34 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 2a B 3a C 4a D d = 30◦ , biết S BC tam giác Câu 35 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 26 16 13 Câu 36 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B C a D Trang 3/5 Mã đề Câu 37 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ √ a a B D C 2a A a 2 Câu 38 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab 1 A B √ C √ D √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 39 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ c a2 + b2 b a2 + c2 a b2 + c2 abc b2 + c2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 40 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a B C D a A Câu 41 Mệnh đề sau sai? Z A Nếu F(x) nguyên hàm f (x) (a; b) C số !0 Z f (x)dx = f (x) B f (x)dx = F(x) + C C F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) D Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Câu 42 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) khoảng (a; b) B Cả ba câu sai C G(x) = F(x) − C khoảng (a; b), với C số D F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số Câu 43 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai sai B Chỉ có (I) C Chỉ có (II) Câu 44 Hàm số f có nguyên hàm K A f (x) liên tục K C f (x) có giá trị nhỏ K B f (x) xác định K D f (x) có giá trị lớn K D Cả hai Câu 45 Trong khẳng định sau, khẳng định sai?√ A F(x) = x nguyên hàm hàm số f (x) = x B F(x) = x2 nguyên hàm hàm số f (x) = 2x C Cả ba đáp án D Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số Câu 46 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? Trang 4/5 Mã đề (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có nguyên hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Khơng có câu B Câu (I) sai C Câu (III) sai D Câu (II) sai sai Câu 47 đề sai? Z Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z A ( f (x) − g(x))dx = f (x)dx − g(x)dx B ( f (x) + g(x))dx = f (x)dx + g(x)dx Z Z Z Z Z C f (x)g(x)dx = f (x)dx g(x)dx D k f (x)dx = f f (x)dx, k ∈ R, k , Câu 48 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có f (x) = F(x) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) Câu 49 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu B Chỉ có (II) C Chỉ có (I) D Cả hai câu sai Câu 50 Trong khẳng định sau, khẳng định sai? A Z F(x) = − cos x nguyên hàm hàm số f (x) = sin x u0 (x) dx = log |u(x)| + C B u(x) C F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x D Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề Free LATEX BÀI TẬP TOÁN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi − n2 Câu [1] Tính lim bằng? 2n + 1 A B C − D Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ A lim [ f (x)g(x)] = ab x→+∞ x→+∞ f (x) a C lim = x→+∞ g(x) b D lim [ f (x) + g(x)] = a + b x→+∞ 2n − + 3n + A B x+1 Câu Tính lim x→−∞ 6x − B A x−2 Câu Tính lim x→+∞ x + A − B Câu Tính lim 2n2 Câu Tính giới hạn lim x→2 A B lim [ f (x) − g(x)] = a − b x2 − 5x + x−2 B C +∞ C D −∞ D C −3 D C −1 D Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim− f (x) = f (a) lim− f (x) = f (b) B lim+ f (x) = f (a) lim+ f (x) = f (b) x→a x→b x→a x→b C lim− f (x) = f (a) lim+ f (x) = f (b) Câu Tính lim x→5 A − x→a x→b x→a x→b D lim+ f (x) = f (a) lim− f (x) = f (b) x2 − 12x + 35 25 − 5x B +∞ C −∞ D Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A − sin 2x B + sin 2x C −1 + sin 2x 4x + Câu 10 [1] Tính lim bằng? x→−∞ x + A −1 B C Câu 11 [12213d] Có giá trị nguyên m để phương trình nhất? A B C 2 D −1 + sin x cos x D −4 3|x−1| = 3m − có nghiệm D Câu 12 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≥ B m ≤ C m < D m > Trang 1/5 Mã đề Câu 13 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 6) B (1; 3; 2) C (2; 4; 4) D (2; 4; 3) Câu 14 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 B m ≥ C m < D m > A m ≤ 4 4 x x x Câu 15 [12211d] Số nghiệm phương trình 12.3 + 3.15 − = 20 A B Vô nghiệm C D q Câu 16 [12216d] Tìm tất giá trị thực tham số m để phương trình log23 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 1] B m ∈ [0; 2] C m ∈ [−1; 0] D m ∈ [0; 4] log 2x Câu 17 [1229d] Đạo hàm hàm số y = x2 − ln 2x − ln 2x 1 − log 2x A y0 = B y0 = C y0 = D y0 = 2x ln 10 x ln 10 2x ln 10 x3 Câu 18 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b C D A B 2 log(mx) Câu 19 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m = B m ≤ C m < ∨ m > D m < √ Câu 20 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 62 B 64 C 63 D Vô số Câu 21 Phát biểu sau sai? = với k > nk C lim un = c (Với un = c số) D lim √ = n un Câu 22 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A −∞ B C D +∞ 7n − 2n + Câu 23 Tính lim 3n + 2n2 + A B C - D 3 Câu 24 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un B Nếu lim un = a < lim = > với n lim = −∞ ! un C Nếu lim un = a , lim = ±∞ lim = !vn un D Nếu lim un = a > lim = lim = +∞ A lim qn = với |q| > Câu 25 Tính lim A B lim 2n2 − 3n6 + n4 B C D Trang 2/5 Mã đề Câu 26 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A Câu 27 Tính lim A B n−1 n2 + B cos n + sin n Câu 28 Tính lim n2 + A B −∞ Câu 29 Dãy số sau có giới hạn khác 0? sin n A B √ n n ! 1 Câu 30 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C D C D C D +∞ C n+1 n C D n D 0 0 0 Câu 31.√ [2] Cho hình lâp phương √ √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC a a a a A B C D 2 3a , hình chiếu vng Câu 32 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a 2a a A B C D 3 Câu 33 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC 1 ab ab A √ B C D √ √ a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 34 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 1 ab ab A √ B √ C D √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 35 [2] Cho hình chóp S ABCD có đáy hình vuông cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B C D a 6 Câu 36 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ a b2 + c2 c a2 + b2 abc b2 + c2 b a2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Trang 3/5 Mã đề Câu 37 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vuông góc với ∆ AC = BD √ = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ a a A B a C 2a D [ = 60◦ , S O Câu 38 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a Khoảng cách từ A đến (S √ BC) √ √ 2a 57 a 57 a 57 A B a 57 C D 19 17 19 Câu 39 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a B a C D A 2 d = 30◦ , biết S BC tam giác Câu 40 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 26 16 13 Câu 41 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có f (x) = F(x) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ (a; b), ta có F (x) = f (x), ngồi F (a+ ) = f (a) F (b− ) = f (b) Câu 42 đề sau sai? Z [1233d-2] Mệnh Z A k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z B [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z C f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z Z D [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Câu 43 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B (I) (III) C Cả ba mệnh đề Câu 44 Z Các khẳng định sau Z sai? A Z C f (x)dx = F(x) + C ⇒ !0 f (x)dx = f (x) f (t)dt = F(t) + C B Z Z D D (I) (II) Z f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C Z k f (x)dx = k f (x)dx, k số Trang 4/5 Mã đề Câu 45 Z Trong cácα+1khẳng định sau, khẳng định sai? Z x + C, C số B dx = x + C, C số A xα dx = α+1 Z Z C dx = ln |x| + C, C số D 0dx = C, C số x Câu 46 đề sai? Z Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z A ( f (x) + g(x))dx = f (x)dx + g(x)dx B ( f (x) − g(x))dx = f (x)dx − g(x)dx Z Z Z Z Z C k f (x)dx = f f (x)dx, k ∈ R, k , D f (x)g(x)dx = f (x)dx g(x)dx Câu 47 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A Cả ba câu sai B F(x) = G(x) khoảng (a; b) C G(x) = F(x) − C khoảng (a; b), với C số D F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số Câu 48 Trong khẳng định sau, khẳng định sai?√ A F(x) = x nguyên hàm hàm số f (x) = x B Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số C Cả ba đáp án D F(x) = x2 nguyên hàm hàm số f (x) = 2x Câu 49 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (I) B Chỉ có (II) C Cả hai sai D Cả hai Câu 50 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu B Chỉ có (I) C Cả hai câu sai D Chỉ có (II) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A C C B 11 D D B C 10 C 12 A B 13 A 15 B C 14 B 16 B 18 17 A D 19 B 20 21 B 22 D D 23 C 24 25 C 26 27 C 28 A 29 A B B 30 A 31 C 32 A 33 C 34 D 36 D 35 37 D B 38 39 C 40 41 C 42 43 C 44 A 45 A B D C 46 A 47 D 48 C 49 A 50 B Mã đề thi C B D D 11 C C 10 D 12 A D C D C 13 A 14 A 15 A 16 17 18 B 19 A 20 A 21 A 22 23 D 26 27 A C D B 28 29 C 30 A 31 C 32 D 33 C C D 34 C 35 36 A 37 A 38 A 40 B 41 D 42 A 43 D 44 46 45 A C 47 49 D 24 C 25 39 C 48 A B 50 A D B D ... số - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi − n2 Câu [1] Tính lim bằng? 2n + 1 A B C − D ... Cho hàm số y = ln x + A xy0 = ey + B xy0 = ey − C xy0 = −ey − D xy0 = −ey + ! 3n + 2 Câu 21 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D + + ··· + n Mệnh đề... thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập " đây? ! 5 A [3; 4) B 2; C ;3 D (1; 2) 2 log 2x Câu 15 [1229d] Đạo hàm hàm số y = x2 − ln

Ngày đăng: 06/03/2023, 23:28

w