1. Trang chủ
  2. » Tất cả

Bài tập toán thpt pdf (3)

12 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 137,16 KB

Nội dung

Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Tính lim x→−∞ x + 1 6x − 2 bằng A 1 B 1 6 C 1 3 D 1 2 Câu 2 Tìm giới hạn lim 2n + 1 n + 1 A 2 B 3 C 1 D 0 C[.]

Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi x+1 x→−∞ 6x − A B 2n + Câu Tìm giới hạn lim n+1 A B 3 x −1 Câu Tính lim x→1 x − A +∞ B 2−n Câu Giá trị giới hạn lim n+1 A −1 B Câu Tính lim C D C D C −∞ D C D C D !n C !n D Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B Câu !Dãy số sau có giới !hạn 0? n n B − A e Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim+ f (x) = lim− f (x) = a B lim f (x) = f (a) x→a x→a x→a C lim+ f (x) = lim− f (x) = +∞ x→a D f (x) có giới hạn hữu hạn x → a x→a x+2 bằng? x→2 x A B 1−n Câu [1] Tính lim bằng? 2n + 1 A − B 2 Câu 10 Giá trị lim (3x2 − 2x + 1) Câu Tính lim x→1 A B +∞ C D C D C D √ Câu 11 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 64 B 62 C Vô số D 63 √ √ Câu 12 [12215d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm 3 A < m ≤ B ≤ m ≤ C m ≥ D ≤ m ≤ 4 log 2x Câu 13 [1229d] Đạo hàm hàm số y = x2 − ln 2x − log 2x 1 − ln 2x A y0 = B y0 = C y0 = D y0 = 3 x 2x ln 10 2x ln 10 x ln 10 Câu 14 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x + A xy0 = −ey − B xy0 = ey − C xy0 = −ey + D xy0 = ey + 2 Trang 1/5 Mã đề Câu 15 [12216d] Tìm tất giá trị thực tham số m để phương trình log23 √ i h có nghiệm thuộc đoạn 1; A m ∈ [0; 2] B m ∈ [−1; 0] C m ∈ [0; 4] q x+ log23 x + 1+4m−1 = D m ∈ [0; 1] Câu 16 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C D Vô số Câu 17 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 √ Câu 18 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập " đây? ! 5 A [3; 4) B 2; C ;3 D (1; 2) 2 Câu 19 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≥ B m < C m > D m ≤ Câu 20 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C Vô nghiệm D 12 + 22 + · · · + n2 n3 B +∞ Câu 21 [3-1133d] Tính lim A Câu 22 Phát biểu sau sai? A lim qn = với |q| > 1 C lim k = với k > n Câu 23 Dãy số sau có giới hạn 0? n2 − n2 + n + A un = B u = n 5n − 3n2 (n + 1)2 Câu 24 Tính lim A n−1 n2 + C D B lim un = c (Với un = c số) D lim √ = n C un = − 2n 5n + n2 D un = B C D B C D n2 − 3n n2 Câu 25 Tính lim A 2n − 3n6 + n4 ! 3n + 2 Câu 26 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D Câu 27 Tính lim A 7n2 − 2n3 + 3n3 + 2n2 + B - C D Trang 2/5 Mã đề 1 1 Câu 28 Tính lim + + ··· + 1.2 2.3 n(n + 1) ! C D Câu 29 Dãy số sau có giới hạn khác 0? sin n A B n n C √ n D n+1 n Câu 30 Tính lim n+3 A C D A B B 0 0 Câu 31.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a B C D A 2 Câu 32 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) a 8a 2a 5a A B C D 9 9 Câu 33 [2] Cho hình chóp S ABCD có đáy hình vuông cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B C D a 6 [ = 60◦ , S O Câu 34 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a Khoảng cách từ O đến (S √ √ BC) √ a 57 2a 57 a 57 A B a 57 D C 19 17 19 Câu 35 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A a B 2a C a D Câu 36 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng 0 (AB0C) √ √ (A C D) √ √ a 2a a A B a C D 2 Câu 37 [2] Cho hai mặt phẳng (P) (Q) vuông góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ √ a a A a B C 2a D [ = 60◦ , S O Câu 38 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ Khoảng cách từ A đến (S√BC) √ √ a 57 2a 57 a 57 A a 57 B C D 17 19 19 Câu 39 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab A √ B C D √ √ a + b2 a2 + b2 a2 + b2 a2 + b2 Trang 3/5 Mã đề 3a , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a a 2a B C D A 3 Câu 40 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = Câu 41 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 42 Trong khẳng định sau, khẳng định sai? A Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số B Z F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x u0 (x) dx = log |u(x)| + C C u(x) D F(x) = − cos x nguyên hàm hàm số f (x) = sin x Câu 43 Z Trong khẳng định sau, khẳng định sai? Z 0dx = C, C số A Z C xα dx = xα+1 + C, C số α+1 B Z D dx = x + C, C số dx = ln |x| + C, C số x Câu 44 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có nguyên hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Khơng có câu B Câu (III) sai C Câu (II) sai D Câu (I) sai sai Câu 45 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (I) B Cả hai câu C Cả hai câu sai D Chỉ có (II) Trang 4/5 Mã đề Câu 46 !0 sau sai? Z Mệnh đề A f (x)dx = f (x) Z B Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C C F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) D Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Câu 47 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Câu 48 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A Cả ba mệnh đề B (I) (II) C (I) (III) D (II) (III) Câu 49 f (x), g(x) liên Z Cho hàm số Z Z tục R Trong cácZmệnh đề sau, mệnh Z đề sai? A f (x)g(x)dx = f (x)dx g(x)dx B k f (x)dx = f f (x)dx, k ∈ R, k , Z Z Z Z Z Z C ( f (x) + g(x))dx = f (x)dx + g(x)dx D ( f (x) − g(x))dx = f (x)dx − g(x)dx Câu 50 Hàm số f có nguyên hàm K A f (x) có giá trị lớn K C f (x) có giá trị nhỏ K B f (x) xác định K D f (x) liên tục K - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề Free LATEX BÀI TẬP TOÁN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi 2−n Câu Giá trị giới hạn lim n+1 A B 2 x −9 Câu Tính lim x→3 x − A +∞ B 2x + Câu Tính giới hạn lim x→+∞ x + 1 A B − 2n Câu [1] Tính lim bằng? 3n + A B x−2 Câu Tính lim x→+∞ x + A B 2n − Câu Tính lim 2n + 3n + A −∞ B C −1 D C D −3 C −1 D 2 C − D C −3 D − C D +∞ Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim+ f (x) = lim− f (x) = +∞ B f (x) có giới hạn hữu hạn x → a x→a x→a C lim f (x) = f (a) D lim+ f (x) = lim− f (x) = a x→a x→a Câu Phát biểu sau sai? A lim qn = (|q| > 1) C lim = n 4x + Câu [1] Tính lim bằng? x→−∞ x + A B −4 x − 12x + 35 Câu 10 Tính lim x→5 25 − 5x 2 A B − 5 x→a B lim un = c (un = c số) D lim k = n C −1 D C +∞ D −∞ Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = −e − B xy = −e + C xy0 = ey + D xy0 = ey − 1 − xy Câu 12 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 + 19 11 − 19 11 − 18 11 − 29 A Pmin = B Pmin = C Pmin = D Pmin = 9 21 Câu 11 [3-12217d] Cho hàm số y = ln √ Câu 13 [12215d] Tìm m để phương trình x+ A ≤ m ≤ B ≤ m ≤ 4 1−x2 √ − 3m + = có nghiệm C < m ≤ D m ≥ − 4.2 x+ 1−x2 Trang 1/5 Mã đề log(mx) = có nghiệm thực log(x + 1) C m < ∨ m > D m ≤ Câu 14 [1226d] Tìm tham số thực m để phương trình A m < B m < ∨ m = Câu 15 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C D Vô số √ Câu 16 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 62 B 64 C 63 D Vô số Câu 17 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C Vơ nghiệm Câu 18 [12213d] Có giá trị nguyên m để phương trình nhất? A D 1 3|x−1| B C log 2x Câu 19 [1229d] Đạo hàm hàm số y = x2 − ln 2x 1 − ln 2x A y0 = B y0 = C y0 = x ln 10 2x ln 10 2x3 ln 10 = 3m − có nghiệm D 1 − log 2x D y0 = x3 q Câu 20 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 4] B m ∈ [0; 1] C m ∈ [0; 2] D m ∈ [−1; 0] un Câu 21 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B C −∞ D +∞ Câu 22 Dãy số sau có giới hạn 0? n2 − n2 + n + A un = B un = 5n − 3n2 (n + 1)2 n2 − 3n C un = n2 Câu 23 Phát biểu sau sai? A lim qn = với |q| > 1 C lim √ = n B lim un = c (Với un = c số) D lim k = với k > n D un = − 2n 5n + n2 Câu 24 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C 1 + + ··· + 1+2 + + ··· + n A B C 2 Câu 26 Trong mệnh đề đây, mệnh đề sai? D ! Câu 25 [3-1131d] Tính lim D +∞ ! un A Nếu lim un = a < lim = > với n lim = −∞ Trang 2/5 Mã đề ! un B Nếu lim un = a , lim = ±∞ lim = v! n un = +∞ C Nếu lim un = a > lim = lim D Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! 1 Câu 27 Tính lim + + ··· + 1.2 2.3 n(n + 1) C D A B + + ··· + n Câu 28 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + A lim un = B Dãy số un khơng có giới hạn n → +∞ D lim un = C lim un = 7n2 − 2n3 + 3n3 + 2n2 + B cos n + sin n Tính lim n2 + B +∞ Câu 29 Tính lim A - Câu 30 A C D C D −∞ Câu 31 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ √ √ √ thẳng BD b a2 + c2 abc b2 + c2 c a2 + b2 a b2 + c2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 d = 30◦ , biết S BC tam giác Câu 32 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 13 26 16 Câu 33 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 1 ab ab A √ B √ C D √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 34 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 5a 8a a 2a B C D A 9 9 Câu 35 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B a C D 2 [ = 60◦ , S O Câu 36 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ Khoảng cách từ O đến (S√BC) √ √ a 57 2a 57 a 57 A a 57 B C D 19 19 17 Trang 3/5 Mã đề Câu 37 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A a B 2a C a D Câu 38 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ a a B C a D 2a A Câu 39 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C) (A0C D) √ √ √ √ a 2a a A a C D B Câu 40 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a A a B C D Câu 41 Trong khẳng định sau, khẳng định sai? A F(x) = x2 nguyên hàm hàm số f (x) = 2x B Cả ba đáp án C Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số √ D F(x) = x nguyên hàm hàm số f (x) = x Câu 42 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (I) B Cả hai C Chỉ có (II) D Cả hai sai Câu 43 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 44 Z [1233d-2] Mệnh đề sau sai? f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z Z B [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z Z C k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z D [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R A Trang 4/5 Mã đề Câu 45 Hàm số f có nguyên hàm K A f (x) có giá trị nhỏ K C f (x) có giá trị lớn K B f (x) xác định K D f (x) liên tục K Câu 46 Trong khẳng định sau, khẳng định sai? A Z F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x u0 (x) dx = log |u(x)| + C B u(x) C F(x) = − cos x nguyên hàm hàm số f (x) = sin x D Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Câu 47 Z Trong khẳng định sau, khẳng định sai? Z dx = x + C, C số A Z C B dx = ln |x| + C, C số x Z D 0dx = C, C số xα dx = xα+1 + C, C số α+1 Câu 48 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số B Cả ba câu sai C F(x) = G(x) khoảng (a; b) D G(x) = F(x) − C khoảng (a; b), với C số Câu 49 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (II) sai B Câu (III) sai C Câu (I) sai D Khơng có câu sai Câu 50 Cho hai hàm y = f (x), y = g(x) Z có đạo hàm Z R Phát biểu sau đúng? A Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z B Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 B A B A B B A A 11 10 B 13 15 D D C 12 B 14 B 16 C 17 A 18 C 19 A 20 B D 21 25 27 22 A C 23 B 24 A D 26 B B 28 A D 29 30 C 31 A 32 C 33 A 34 A 35 D 37 39 41 D C 38 40 A C B 43 45 36 C 42 C 44 A C B 46 47 A 48 49 A 50 C B D Mã đề thi C D A C C C A C D 10 A 11 D 12 C 13 A 14 C 15 17 16 A D 19 A 21 B 23 A 25 B 18 D 20 D 22 D 24 B 26 C 28 C 29 A 30 C 31 A 32 B 34 B 36 B 38 B B 27 C D 33 35 B 37 A 39 C 40 C 41 D 42 C 43 D 44 C 45 D 46 47 D 48 D 49 D 50 D B ... - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề Free LATEX BÀI TẬP TOÁN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi 2−n Câu Giá trị giới hạn lim n+1 A B 2 x −9 Câu... 5n + n2 D un = B C D B C D n2 − 3n n2 Câu 25 Tính lim A 2n − 3n6 + n4 ! 3n + 2 Câu 26 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D Câu 27 Tính lim A 7n2... Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị

Ngày đăng: 06/03/2023, 23:28

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w