Thời gian làm bài: 180 phút !"#$(7,0 đim) %&(2 đim) !"!#$%&'()*+",- . x y x − = − . /01234/56)*+'(782))9$:,';.($/56<2 . %&(2 đim) ( /01234 . = '. ( > . ? ) .@ ' ( . . . x x x x π π + + = + + .( A/01234B C ? . . ? . x x y x y x y x xy − + = − + = − %&(1 đim)'DD)/EBF C @ + G') ( ) x x dx x π ∫ %&((1 đim)' 4)H/IJ)H$6IJG"+,2)!5K2LI!MIJF+7)),N G"))+,2))EL $OP+,N/Q2'IJ(!"'I()R2L!M,N/Q2$62H)>@ @ D)K)*+2H)2S++,N /Q2'IJ(!"'J( %&('(1 đim)+77)G"))-T012U+,V+WW)FX2,3<2B ? a b b c c a ab c bc a ca b + + + + + ≥ + + + )(3 đim)Th sinh ch đư!c làm m"t trong hai ph%n (ph%n A ho'c B) * +,-.+/0123451++&61 %&(7(1 đim) 32,N/Q2Y+$Z[6)$:,I';(!"$0\2Q2 ∆ B.[W?6WCF@ 4,Y+$Z$:,J5Z)$0\2Q2 ∆ +)$0\2Q2IJ!" ∆ ]/!M+52H)C^ @ %&(7(1 đim8'328K22+!MAY+$Z[6_7)$:,`';a;( !"+$0\2Q2 ' ( B . ? x y z d + = = − − !" C ' b( B . ^ x y z d − − = = X2,B$:,`7'T(7'Tc()R2<,3 ,Z,N/Q2/01234,N/Q2$H %&(7(1 đim) /01234B . . . '.C ( '.C ( '.C ( G2 G2 + + + + = x x x x x log x x x +,-.+/0123451+%12.7- %&(9(1 đim) 32,N/Q2Y+$Z[6)$0\23d . . ' (B C x y+ = 7$0\2Q2 ' ( B @d x y m + + = 4, m $: ' (C )e ' (d LI!"J+)TAD)+,2)IJGMf %&(9(1 đim) 328K22+!MAY+$Z[6_7)+,N/Q2B 'g(B.[h6W_WF@7'i(B[h6W._W?F@7'j(B[W.6h?_WF@ !"$0\2Q2 ∆ B . . − − x F + y F ? z Y . ∆ G"2+56)*+'g(!"'i( /01234$0\2Q2'T(!5K22H)!M'j(!")e)+$0\2Q2 ∆ 7 . ∆ %&(9(1 đim) f/01234BG2 [ 'G2 ? 'k [ h=.(( ≤ aaaaaaaaaaPaaaaaaaaa (:*; E5al mZT52 :, no/[)$&B { } p D = ¡ nD . b @ ' ( y x D x − = < ∀ ∈ − P",-2&)3 ))82 ' ;( −∞ !" '; ( +∞ nP",-8K2)H))3& nML x Limy + → = +∞ x Limy − → = −∞ . x Lim y →+∞ = . x Lim y →−∞ = %&)HA,)o$X2B[F7A,)o2+26F. nJ2 n#$%& @.^ @.^ @.^ @.^ . n/56)*+'(L$:, @ @ ' ; ' (( ' (M x f x C∈ )H/01234 @ @ @ b' (' ( ' (y f x x x f x= − + P+6 . . @ @ @ ' ( . . @x x y x x + − − + − = 'n( n2))9$:,';.($/56'n(<2 . @ C @ . . . ' ( x x − ⇔ = + − 2$0])2A, @ @x = !" @ .x = n)/56)q4,B @x y + − = !" ^ @x y + − = @.^ @.^ @.^ @.^ . nJ$r/01234$V)012$012!M . ? . @ ' ( > @ > c x x c x π − + + + = '. ( ^ ' ( ? @ ? > c x c x π π ⇔ + + + + = . . ' ( ^ ' ( . @ > > c x c x π π ⇔ + + + + = $0]) ' ( > . c x π + = − !" ' ( . > c x π + = − 'GL( n ' ( > . c x π + = − $0])2A, . . x k π π = + !" ^ . > x k π π = − + @.^ @.^ @.^ @.^ .. nJ$rA012$012!M . . ? ? . ' ( ' ( x xy x y x y x xy − = − − − = − nNs/t . ? x xy u x y v − = = 7+$0])A . u v v u = − − = − nA3 $0])2A,'5;!(G"';@(!"'a.;a?( n9$H2$0])2A,'[;6(G"';@(!"'a;@( @.^ @.^ @.^ @.^ ? nNF)[ DTFa[T[7$r)o[F@4F7 C x π = 4 . t = 9$H . . . . G Gt t I dt dt t t = − = ∫ ∫ nN . G ;u t dv dt t = = ;du dt v t t ⇒ = = − 563+ . . . G G . . . . I t dt t t t = − + = − − ∫ nu5 . . G . . I = − − @.^ @.^ @.^ @.^ C n#4 nYPG"352$:,J7)X2, ' (SH ABC ⊥ nv)$&$w22H)2S++,N/Q2'IJ(7'I(!M,N$6G" @ >@SEH SFH = = nx HK SB ⊥ 7Go/G5o563+2H)2S++,N/Q2'IJ(!"'J( <2 HK A no/G5o!"D$0])IFIJF+7 . . a HA = 7 @ ? + >@ . a SH HF = = n+,2)P!5K2LP)H . . . ? @ KH a HK HS HB = + ⇒ = n+,2)IP!5K2LP)H . .@ . + ? ? @ a AH AK H KH a = = = ? ) .? AK H ⇒ = @.^ @.^ @.^ @.^ ^ nJ$r ' (' ( a b c c ab c ab b a a b + − − = = + + − − − − n9$H ' (' ( ' (' ( ' (' ( c b a VT a b c a c b − − − = + + − − − − − − +77)T012!"+WW)F +77)5Z)82'@;(Fya+7a7a) T012 n/Tt2f$Q2X)K)+-T012+$0]) ? ? ' (' ( ' (' ( ' (' ( c b a VT a b c a c b − − − ≥ − − − − − − F?'$/),( Q2X)[63+8!")O8 ? a b c = = = @.^ @.^ @.^ @.^ >+ n ∆ )H/01234+,- ? . . x t y t = − = − + !")H!)/ ' ?;.(u = − ur nI5Z) ∆ ' ? ; . . (A t t ⇒ − − + n+)H'IJ; ∆ (FC^ @ ' ; ( . c AB u⇔ = uuuur ur . AB u AB u ⇔ = uuuur ur ur . ^ ? >k ^> C^ @ ? ? t t t t ⇔ − − = ⇔ = ∨ = − n)$:,)q4,G" . ?. C ?. ' ; (7 ' ; ( ? ? ? ? A A − − @.^ @.^ @.^ @.^ =+ n'T($u5+ '@; ;@(M − !")H!)/ '; .; ?(u = − − uur 'Tc($u5+ . '@;;C(M !")H!)/ . ';.;^(u = uur n+)H . ; ' C; z;C(u u O = − − ≠ uur uur ur 7 . '@;.;C(M M = uuuuuuur v{ . . ; > C @u u M M = − + = uur uur uuuuuuur 'T(!"'Tc($%2/Q2 nY'g(G",N/Q2)X+'T(!"'Tc(Fy'g()H!/ ';.; (n = − ur !"$u5+ ` )H/01234 . . @x y z + − + = n|f6$:,`';a;(5Z),}'g(79$H+)H$/), @.^ @.^ @.^ @.^ z+ n~58AB[y@ nPB[{[FG"2A, nP.B[{ x ≠ 7$r/01234012$012!M . .G2 '.C ( . G2 '.C ( G2 '.C ( x x x x x x + = + + + + + N G2 ' ( x x t+ = 7+$0])/01234 . . .t t t + = + + 2$0])F!"Fa.•? nMF G2 ' ( x x⇒ + = /01234"6!K2A, nMFa.•? . G2 ' ( ? x x ⇒ + = − . ? '.C ( x x⇔ + = 'n( mof6 z x = G"2A,)*+'n( m5 z x > 4'n(y m5 z x < 4'n(€7!o6'n()H2A,T56f z x = nG5oB)2A,)*+/01234$V)G"[F!" z x = @.^ @.^ @.^ @.^ > n'()HE,'@;@(78DjF n'T()e'(L+$:,/EA ' ; ( d O d ⇔ < n+)H . . . OAB S OAOB AOB AOB = = ≤ @.^ @.^ 9$HTAD)+,2)IJGMf8!")O8 @ k@AOB = ' ; ( . d I d⇔ = m ⇔ = ± @.^ @.^ = n ∆ )H/01234+,- . . ? x t y t z t = − = − + = n . ∆ )H/01234+,- . ^ ? x s y s z s = + = + = n• . ;d A d B∩ ∆ = ∩∆ = '. . ; ;? (J'.W;^W?;(A t t t ⇒ − − + n ' . ;? >; ? (AB s t s t s t = + − + − uuuur 7,}'j()H!/ ';.; ?(n = − ur n ' ( ‚d R AB n ⊥ ⇔ uuuur ur )R2/012 . ? > ? . ? s t s t s t + − + − ⇔ = = − .? .C t⇒ = nT$u5+ .? ' ; ; ( . . z A !")H!)/ ';.; ?(n = − ur FyT)H/01234 .? z . . . ? z x y − − − = = − @.^ @.^ @.^ @.^ z n~58AB ? @ G2 'k =.( @ k =. @ x x x > − > − > 2$0]) k G2 =?x > 4 k G2 =?x > y /$V)012$012!M ? G2 'k =.( x x − ≤ k =. ? x x ⇔ − ≤ ? z ? k x x ≥ − ⇔ ≤ .x ⇔ ≤ nG5oo/2A,B k 'G2 =.;.ƒT = @.^ @.^ @.^ @.^ . đim) /01234B . . . '.C ( '.C ( '.C ( G2 G2 + + + + = x x x x x log x x x + ,- .+/0123451+%12. 7- %&(9(1 đim) 32,N/Q2Y+$Z[6)$023d . . ' (B C x. D = ¡ nD . b @ ' ( y x D x − = < ∀ ∈ − P", - 2&)3 ))82 ' ;( −∞ !" '; ( +∞ nP", - 8K2)H))3& nML x Limy + → = +∞ x Limy − → =. d⇔ = m ⇔ = ± @.^ @.^ = n ∆ )H/01234+, - . . ? x t y t z t = − = − + = n . ∆ )H/01234+, - . ^ ? x s y s z s = + = + = n• . ;d A