1. Trang chủ
  2. » Giáo án - Bài giảng

Đề thi chọn học sinh giỏi tỉnh Bắc Ninh 2014

1 1K 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 39,5 KB

Nội dung

UBND TỈNH BẮC NINH SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI CHỌN HỌC SINH GIỎI CẤP TỈNH NĂM HỌC 2013 – 2014 Môn thi: Toán – Lớp 9 Thời gian làm bài: 150 phút (Không kể thời gian giao đề) Ngày thi: 28 tháng 3 năm 2014 Câu 1. (4 điểm). Cho biểu thức: P = 2 x - x 2x + x 2(x - 1) - + (x > 0, x 1). x + x + 1 x x - 1 ≠ 1. Rút gọn P. 2. Tìm giá trị của x để P = 3. Câu 2. (4 điểm). Cho phương trình 2 x + (4m + 1)x + 2(m - 4) = 0 (1) (x là ẩn số, m là tham số). 1. Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt với mọi m. 2. Gọi x 1 , x 2 là hai nghiệm của (1). Tìm m để 1 2 x x 17− = . Câu 3. (4 điểm) 1.Giải hệ phương trình 4x 2 + y 4 - 4xy 3 = 1 2x 2 + y 2 -2xy = 1 2. Cho các số thực m, n, p thoả mãn: n 2 + np + p 2 = 1 - 2 3m 2 . Tìm giá trị lớn nhất và nhỏ nhất của biểu thức S = m + n + p. Câu 4 (5 điểm). Cho đường tròn tâm O đường kính AB cố định. Ax và Ay là hai tia thay đổi luôn tạo với nhau góc 60 0 , nằm về hai phía của AB, cắt đường tròn (O) lần lượt tại M và N. Đường thẳng BN cắt Ax tại E, đường thẳng BM cắt Ay tại F. Gọi K là trung điểm của đoạn thẳng EF. 1. Chứng minh rằng EF 3 AB = . 2. Chứng minh OMKN là tứ giác nội tiếp. 3. Khi tam giác AMN đều, gọi C là điểm di động trên cung nhỏ AN (C A, C N).≠ ≠ Đường thẳng qua M và vuông góc với AC cắt NC tại D. Xác định vị trí của điểm C để diện tích tam giác MCD là lớn nhất. Câu 5 (3 điểm). 1. Cho 2014 số nguyên dương không lớn hơn 2014 và có tổng bằng 4028. Chứng minh rằng từ 2014 số đó luôn chọn được các số mà tổng của chúng bằng 2014. 2. Cho tam giác ABC có các điểm D,E,F lần lượt nằm trên các cạnh AB,BC,CA. Gọi giao điểm của AE với BF và CD lần lượt là Q,R, giao điểm của CD và BF là P. Biết diện tích bốn tam giác ADR, BEQ, CFP, PQR cùng bằng 1. Chứng minh các tứ giác AFPR, BDRQ, CEQP có diện tích bằng nhau. HẾT Họ và tên thí sinh : Số báo danh Họ và tên, chữ ký: Giám thị 1: Giám thị 2: ĐỀ CHÍNH THỨC . BẮC NINH SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI CHỌN HỌC SINH GIỎI CẤP TỈNH NĂM HỌC 2013 – 2014 Môn thi: Toán – Lớp 9 Thời gian làm bài: 150 phút (Không kể thời gian giao đề) Ngày thi: 28 tháng 3 năm 2014 Câu. nhất. Câu 5 (3 điểm). 1. Cho 2014 số nguyên dương không lớn hơn 2014 và có tổng bằng 4028. Chứng minh rằng từ 2014 số đó luôn chọn được các số mà tổng của chúng bằng 2014. 2. Cho tam giác ABC

Ngày đăng: 31/03/2014, 16:00

TỪ KHÓA LIÊN QUAN

w