Báo cáo khoa học: A new pathway encompassing calpain 3 and its newly identified substrate cardiac ankyrin repeat protein is involved in the regulation of the nuclear factor-jB pathway in skeletal muscle pdf
Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 16 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
16
Dung lượng
826,13 KB
Nội dung
Anewpathwayencompassingcalpain3andits newly
identified substratecardiacankyrinrepeatprotein is
involved intheregulationofthenuclearfactor-jB pathway
in skeletal muscle
Lydie Laure*, Nathalie Danie
`
le*, Laurence Suel, Sylvie Marchand, Sophie Aubert,
Nathalie Bourg, Carinne Roudaut, Ste
´
phanie Duguez, Marc Bartoli and Isabelle Richard
Ge
´
ne
´
thon, CNRS UMR8587 LAMBE, Evry, France
Introduction
Calpain 3isamuscle specific, calcium dependent,
multi-substrate cysteine protease whose mutations are
the cause of limb girdle muscular dystrophy 2A
(LGMD2A, OMIM 253600), a severe muscle disorder
leading to selective atrophy and weakness of proximal
muscles [1,2]. Calpain3 becomes activated once an
Keywords
calpain 3; cardiacankyrinrepeat protein;
limb girdle muscular dystrophy 2A; NF-jB;
skeletal muscle; titin
Correspondence
I. Richard, Ge
´
ne
´
thon, CNRS UMR8587
Lambe, 1 bis rue de l’Internationale, 91000
Evry, France
Fax: +33 (0) 1 60 77 86 98
Tel: +33 (0) 1 69 47 29 38
E-mail: richard@genethon.fr
*These authors contributed equally to this
work
(Received 1 June 2010, revised 11 August
2010, accepted 18 August 2010)
doi:10.1111/j.1742-4658.2010.07820.x
A multiprotein complex encompassinga transcription regulator, cardiac
ankyrin repeatprotein (CARP), andthecalpain3 protease was identified
in the N2A elastic region ofthe giant sarcomeric protein titin. The present
study aimed to investigate the function(s) of this complex inthe skeletal
muscle. We demonstrate that CARP subcellular localization is controlled
by the activity ofcalpain 3: the higher thecalpain 3, the more important
the sarcomeric retention of CARP. This regulation would occur through
cleavage ofthe N-terminal end of CARP by the protease. We show that,
upon CARP over-expression, the transcription factor nuclear factor NF-jB
p65 DNA-binding activity decreases. Taken as a whole, CARP andits reg-
ulator calpain3 appear to occupy a central position inthe important cell
fate-governing NF-jB pathway. Interestingly, the expression ofthe atro-
phying protein MURF1, one of NF-jB main targets, remains unchanged
in presence of CARP, suggesting that thepathwayencompassing cal-
pain3 ⁄ CARP ⁄ NF-jB does not play a role inmuscle atrophy. With NF-jB
also having anti-apoptotic effects, the inability ofcalpain3 to lower
CARP-driven inhibition of NF-jB could reduce muscle cell survival, hence
partly accounting for the dystrophic pattern observed in limb girdle muscu-
lar dystrophy 2A, a pathology resulting from the protease deficiency.
Structured digital abstract
l
MINT-7990388: Titin (uniprotkb:Q8WZ42) physically interacts (MI:0915) with CARP (uni-
protkb:
Q9CR42)bytwo hybrid (MI:0018)
l
MINT-7990374: calpain3 (uniprotkb:P20807) physically interacts (MI:0915) with Titin (uni-
protkb:
Q8WZ42)bytwo hybrid (MI:0018)
l
MINT-7990342: calpain3 (uniprotkb:P20807) physically interacts (MI:0915) with CARP (uni-
protkb:
Q9CR42)bytwo hybrid (MI:0018)
Abbreviations
Ankrd2, ankyrinrepeat domain-containing protein 2; CARP, cardiacankyrinrepeat protein; DARP, diabetes-related ankyrinrepeat protein;
FRAP, fluorescence recovery after photobleaching; GFP, green fluorescent protein; MARP, muscleankyrinrepeat proteins; NF, nuclear factor;
NLS, nuclear localization signals; qRT-PCR, quantitative RT-PCR; ROI, region of interest; TA, tibialis anterior; YFP, yellow fluorescent protein.
4322 FEBS Journal 277 (2010) 4322–4337 ª 2010 The Authors Journal compilation ª 2010 FEBS
internal propeptide is removed from its active site by
an auto-proteolytic process [3]. Although the large
majority ofthe substrates identified are structural pro-
teins [3–5], proteins involvedin cell metabolism [5–7]
and intheregulationof gene andprotein expression
[2,7–9] were also suggested to be potential calpain 3
substrates. Taken together, the ensuing cleavages were
proposed to play a role in three major physiological
processes: the orchestration of sarcomere remodeling
[10–12], the control of apoptosis [9,13] andthe regula-
tion of gene expression [2,7–9].
Calpain 3is found in several different subcellular
localizations within themuscle fiber, notably in associa-
tion with three regions of titin, a giant structural protein
spanning half the sarcomere [3,14,15]. Two of these
regions, the N2A region andthe M line, are involved in
the transmission of mechanical signals to signaling path-
ways. Inthe M line, mechanical stimulation activates
the interaction ofaprotein complex with the kinase
domain of titin, reducing thenuclear translocation of
the transcription factor SRF and impeding gene tran-
scription [16]. Inthe elastic N2A region, mechanical
activity stimulates the expression ofthemuscle ankyrin
repeat proteins (MARPs), a family of gene expression
regulators [17,18]. Passive stretch also induces a subcel-
lular redistribution ofthe MARPs, suggesting a titin-
N2A-mediated link between stress signals and gene
expression [18]. The MARP family is composed of three
proteins, ankyrinrepeat domain-containing protein 2
(Ankrd2), cardiacankyrinrepeatprotein (CARP) and
diabetes-related ankyrinrepeatprotein (DARP),
grouped together with respect to their common minimal
structure and their potential role inthe control of tran-
scription [17,19–21]. Although the three MARPs are
expressed in both heart andskeletalmuscle [18,22,23],
Ankrd2 is mainly expressed inskeletalmuscle [18,24,25],
CARP inthe heart [18,21,26–28] and DARP in equiva-
lent amounts in both tissues [20].
Interestingly, Ankrd2 was previously suggested to be
cleaved by calpain3 [29] but CARP, which was shown
to be the first MARP whose expression increases in
response to exercise inskeletalmuscle [30], was not
assessed as a substrate. The structure of CARP com-
prises several ankyrin-like repeats, PEST motifs (i.e.
regions ofprotein instability rich in proline, glutamic
acid, serine and threonine) and putative nuclear locali-
zation signals (NLS) [18,19,26,28]. Inthe heart, CARP
expression increases in remodeling conditions associ-
ated with pathological hypertrophy [31–34]. Inthe skel-
etal muscle, CARP expression is low under basal
conditions but was reported to be induced in several
conditions such as exercise [30,35–38], atrophy [26] and
muscle pathologies [39–43]. From a molecular point of
view, CARP is known to act as a transcriptional regula-
tor. Indeed, CARP can bind to DNA [19] and inhibits
the transcription of MLC-2V by association with the
transcription factor YB1 inthe heart [21].
Considering that (a) a molecular complex encom-
passes calpain3and CARP inthe N2A elastic region
[18]; (b) exercise stimulates both calpain3 activity [44]
and CARP expression [30] inskeletal muscle; (c) cal-
pain 3 was previously suggested to cleave unidentified
regulators of transcription [9]; and (d) a member of
the MARP family was previously demonstrated to be
cleaved by calpain3 [29], the present study aimed to
identify the possible functional relationship(s) between
CARP andcalpain3andthe physiological pathway(s)
under control. We first showed that calpain3 cleaves
CARP in vitro. Once cleaved, the long C-terminal part
of CARP is more efficiently bound to titin, possibly
impeding CARP nuclear translocation and any subse-
quent gene expression regulation. In addition, we dem-
onstrated that CARP regulates the transcriptional
activities of several transcription factors, including
nuclear factor NF-jB p65. Together, CARP and con-
sequently calpain3 appear to have a central role in the
regulation ofthe important cell fate-governing NF-jB
pathway.
Results
CARP isasubstrateofcalpain 3
Considering the sarcomeric localization of both CARP
and calpain3andthe fact that calpain3 cleaves
another member ofthe MARPs family, the possibility
that CARP could be processed by active calpain3 was
investigated. A direct, in vitro digestion of CARP by
calpain 3 using recombinant proteins could not be
attempted because calpain3is inactivated during purifi-
cation [45]. Inskeletalmuscle cells, calpain3is consid-
ered to be inactive until specific signals trigger its
dissociation from amuscle specific inhibitor [46]. We
therefore tested our hypothesis using ectopic gene
expression in non muscular cells, the only system lead-
ing to uncontrolled activation ofcalpain3. NIH-3T3
fibroblasts were transfected with expression plasmids
encoding CARP (pcDNA-CARP-V5) inthe presence
of wild-type or catalytically-inactive C129S-mutated
calpain 3 (encoded by pYFP-C3-CFP and pYFP-C3-
C129S-CFP, respectively). The activation ofthe protease
was confirmed by the appearance of an autolysis band
at approximately 55 kDa on a calpain-specific western
blot (Fig. 1A). CARP detection was performed using an
antibody raised against the C-terminal V5 epitope. In
the presence ofthe protease-dead C129S calpain 3,
L. Laure et al. Regulationof CARP by calpain 3
FEBS Journal 277 (2010) 4322–4337 ª 2010 The Authors Journal compilation ª 2010 FEBS 4323
CARP migrates at an apparent molecular weight of
approximately 40 kDa. A lower band is clearly visible
in the presence of wild-type calpain3 (37 kDa for the
shorter form), demonstrating that CARP is cleaved in
the presence ofcalpain3in vitro (Fig. 1A).
CARP andcalpain3 interaction was tested using
yeast two-hybrid experiments. Because the ectopic
expression of wild-type calpain3 leads to uncontrolled
proteolysis, a construct encoding catalytically inactive
calpain 3 fused to GAL 4 binding domain (pAS-C3)
was used as a bait anda construct encoding CARP
fused with the activation domain (pGAD-CARP) was
used as a prey. The yeasts resulting from the mating of
clones transformed with either calpain3 or CARP
grow on Leu-Trp-His- selection medium, indicating
that calpain3and CARP interact (Fig. 1B). The fact
that calpain3 interacts directly with CARP supports
the idea that the cleavage is direct.
Efforts to identify CARP cleavage site by protein
sequencing were unsuccessful. We therefore con-
structed several N-terminal truncated forms of CARP
(pDNter1, pDNter2, pDNter3 and pDNter4; see Materi-
als and methods) with respect to the different domains
of this protein (Fig. 1C). First, after expression in
NIH3T3, their migration patterns were compared by
immunoblotting with the profiles observed upon cal-
pain 3 mediated-CARP cleavage (Fig. 1D). The plas-
mid pDNter2 produces a band that matches exactly
CARP cleaved C-terminal fragment (with an apparent
molecular weight of 37 kDa on SDS ⁄ PAGE). Second,
the migration patterns of CARP, DNter1 or DNter2 in
presence or absence ofcalpain3 were compared
(Fig. 1E). Although DNter1 is cleaved when co-
expressed with calpain 3, DNter2 remains unchanged
(Fig. 1E), suggesting that the position ofthe cleavage
site is between amino acids 30 and 71. Interestingly, in
this region, three overlapping sequences fit the poten-
tial consensus recently reported for calpain3 cleavage
sites almost perfectly (Fig. 1C, bottom) [47]. Since
these sequences are localized between amino acids 65
and 88 andthe cleavage site is localized before amino
acid 71, the region of cleavage would be between
amino acids 65 and 71. Considering the location of the
N-terminal extremity of DNter2 on the structure of
CARP andthe presence ofthe potential cleavage sites,
we identifiedthe localization ofthe cleavage site within
a predicted coiled-coil domain (Fig. 1B).
Calpain 3-mediated CARP cleavage strengthens
its interaction with titin N2A
A core anda bipartite NLS were previously identified
around the CARP cleavage site within the coiled-coil
region (positions 71–74 and 59–76) [28]. We therefore
investigated whether calpain3 activity could influence
CARP subcellular localization. Plasmids encoding fluo-
rescent fusion-proteins corresponding to CARP before
and after cleavage by calpain3 (pYFP-CARP-CFP-
HIS, pYFP-DNter2-CFP-HIS and pYFP-Nter-CFP-
HIS) were injected and transferred by electroporation
in tibialis anterior (TA) muscles of 129SvPasIco wild-
type mice. Seven days later, the muscles were exposed
and submitted to direct observation using a confocal
microscope and an excitation wavelength of 514 nm
for yellow fluorescent protein (YFP) emission. The set-
ting for the CFP emission (excitation wavelength of
457 nm) was also attempted, but the fluorescence was
much weaker than YFP andthe images were blurry,
impeding their analysis. We therefore used YFP fluo-
rescence only for further analysis.
Fig. 1. CARP isasubstrateofcalpain3. (A) Western blot analysis performed on NIH3T3 extracts over-expressing V5-tagged CARP in the
presence of either wild-type or C129S-mutated calpain3.The appearance ofa 37-kDa CARP proteolytic fragment shows that CARP is
cleaved in presence of active calpain (V5 specific staining; upper panel). The activation ofcalpain3is verified by the detection ofthe 58 and
55 kDa autolysis fragments (calpain 3 specific staining; lower panel). (B) Yeast two-hybrid assessment ofcalpain 3-CARP interaction. The
calpain 3 construct was mutated on its active site to prevent uncontrolled proteolysis. Yeasts resulting from the mating of clones trans-
formed with calpain3 or CARP were grown on Trp-Leu- (control medium; lower panels) or Trp-Leu-His- medium (selective medium; upper
panels). As a positive control, an interaction test ofcalpain3and N2A-titin is performed (upper left panel). The yeasts carrying calpain3 and
CARP grow on the selective medium, indicating that CARP andcalpain3 interact (upper middle panel). (C) Schematic representation of
CARP structure (top) and sequence (bottom) indicating the presence of two PEST domains (light gray colored box), a coiled-coil region (gray
colored box), five ankyrin repeats (five dark gray boxes), two core NLS (in red) anda bipartite NLS (in yellow; the bipartite NLS encompass-
ing one ofthe core NLS). The region of interaction with titin-N2A is highlighted in bold ⁄ blue, as well as by bold ⁄ blue underlined characters
in the sequence. The consensus site for calpain3 cleavage andthe positions ofthe three imperfect cleavage sequences identifiedin CARP
are shown at the bottom. The truncated constructs (DNter1-4 and NterCARP) are shown below the CARP structure andthecalpain3 cleav-
age site is indicated by an arrow. (D) Western blot analysis performed on NIH3T3 extracts over-expressing either the full-length or the trun-
cated CARP constructs (DNter1–4). The molecular weight of DNter2 matches the lower band detected when CARP is co-expressed with
calpain 3 (37 kDa band; compare the first andthe fourth lane). (E) Western blot analysis performed on NIH3T3 extracts over-expressing
CARP or the truncated DNter1 or DNter2 CARP constructs, inthe presence or absence ofcalpain3. DNter1 is cleaved when co-expressed
with calpain 3, whereas DNter2 is not.
Regulation of CARP by calpain3 L. Laure et al.
4324 FEBS Journal 277 (2010) 4322–4337 ª 2010 The Authors Journal compilation ª 2010 FEBS
The staining for pYFP-CARP-CFP-HIS clearly
demonstrated a mixed nuclearand cytoskeletal pattern
(Fig. 2A; note the striated pattern of fluorescence at
higher magnification, lower left panel), as previously
found in heart cells, where it was initially identified as
a partner ofskeletalmuscle titin-N2A [18]. An analysis
of CARP expression inthe subcellular compartments
obtained from themuscleofthe mice injected with
pYFP-CARP-CFP-HIS confirms the presence of the
protein inthe nucleus and on the cytoskeletal fraction
(Fig. 2B). Because we also confirmed using a two-
hybrid assay that CARP is able to interact with titin-
N2A (Fig. 2D, top left panel), the fluorescent cytoskel-
etal staining most likely corresponds to the sarcomeric
L. Laure et al. Regulationof CARP by calpain 3
FEBS Journal 277 (2010) 4322–4337 ª 2010 The Authors Journal compilation ª 2010 FEBS 4325
location of titin-N2A. Inthe nucleus, a spotted pattern
is clearly distinguished at very high magnification, sug-
gesting that CARP is localized into a very peculiar, yet
unidentified, nuclear subcompartment (Fig. 2A, lower
right panel). This pattern is reminiscent ofthe PML
bodies, a compartment in which Ankrd2 has previously
been observed [17]. The localization of pYFP-DNter2-
CFP-HIS is undistinguishable from the pYFP-CARP-
CFP-HIS localization (Fig. 2C, upper panel). By
contrast, the short fragment CARP-Nter has a very
different localization pattern. Indeed, its expression is
scattered throughout the fiber without any sarcomeric
pattern, and it does not translocate into the nucleus
(Fig. 2C, lower panel). This undefined localization,
taken together with the absence of physiologically rele-
vant protein domains in this region, suggests that this
fragment is probably devoid of biological activity.
To further investigate the possibility of translocation
in between various cell compartments, the strength of
the interaction between CARP andthemuscle sarco-
mere was assessed in vitro using a two-hybrid assay and
in vivo using fluorescence recovery after photobleaching
(FRAP). Two-hybrid experiments were carried out
between yeast competent cells transformed either with
pAS-N2A-titin fused with GAL4-binding domain or
pGAD-CARP or DNter2 fused with GAL4-activation
domain. The growth ofthe clones is more important
when titin-N2A is expressed with DNter2, suggesting
that the weak interaction detected between CARP and
titin-N2A is reinforced after CARP cleavage (Fig. 2D).
FRAP analysis is commonly used to quantify the
mobility ofa fluorescent molecule ina cell compart-
ment of interest [48]. FRAP experiments were carried
out after injection of pYFP-CARP-CFP-HIS, pYFP-
DNter2-CFP-HIS or pYFP-Nter-CFP-HIS inthe TA
of 129SvPasIco mice. The fluorescence recovery speed
observed inthe presence ofthe Nter proteinis so rapid
that we could not even bleach a region of interest
(ROI) efficiently, impeding FRAP measurement (data
not shown). This result suggests that the short N-ter-
minal CARP fragment is freed from the sarcomere,
which is consistent with the results obtained by direct
localization ofthe fluorescence and with the fact that
this fragment does not bear the binding site for titin-
N2A (Fig. 1C). After photobleaching, the recovery
speed of DNter2 is significantly slower than the recov-
ery speed of CARP, suggesting that the long C-termi-
nal CARP fragment is more efficiently bound to titin
after cleavage by calpain3 (P < 0.01; Fig. 2E). It is
worth noting that, inskeletal muscle, an endogenous
inhibitor maintains calpain3in an inactive state until
a signal, such as eccentric exercise [44], activates its
proteolytic functions. As a result, after 7 days of
expression in 129SvPasIco mice, only a minor propor-
tion ofthe CARP substrateis cleaved, as indicated by
the clear sarcomeric pattern (Fig. 2A, upper left panel).
Considering that the weak proportion of YFP-Nter
protein resulting from the cleavage cannot be bleached,
the comparison ofthe FRAP results obtained with
CARP or DNter2 in wild-type animals does not take
into account anything else other than the motilities of
these proteins. These results suggest that, once cleaved
by calpain 3, the C-terminal region of CARP binds
more efficiently to the sarcomeric N2A region, possibly
reducing CARP nuclear translocation.
Because CARP was previously suggested to be able
to form a dimer [49], we aimed to determine whether
the cleavage ofa molecule of CARP could affect the
sarcomeric binding of another uncleaved CARP mole-
cule. Accordingly, we compared CARP subcellular
localization inthe presence or absence ofcalpain 3
using anewcalpain3 knockout mouse model (C3-
null) generated by disruption ofthecalpain3 gene
using homologous recombination (Figs S1 and S2 and
Doc. S1). Although a weak quantity ofcalpain 3
mutated mRNA is still expressed (< 20% ofthe wild-
type level) (Fig. S1B), western blot analysis confirmed
the complete knockout oftheproteinin this murine
model (Fig. S1C). CARP subcellular localization and
mobility were assessed after injection ofa plasmid
encoding pYFP-CARP-CFP-HIS inthe TA muscles of
C3-null and 129SvPasIco strains. Since CARP will not
be processed by calpain3in C3 deficient animals and
will only be slightly processed in wild-type animals,
the full-length CARP proteinis therefore the main
YFP-tagged protein present in both cases. With
respect to CARP localization, no significant difference
was noted: in both models, CARP is localized in the
nucleus, as well as on the fiber sarcomere, easily recog-
nizable by the striated pattern ofthe fluorescence
(Fig. 3A). In FRAP experiments (Fig. 3B), the fluores-
cence recovery speed is significantly slower in wild-
type muscles than incalpain3 deficient muscles
(Fig. 3C), suggesting that the interaction between
CARP and titin is reinforced inthe presence of cal-
pain 3. These results suggest that thecalpain 3-medi-
ated cleavage of some molecules of CARP reinforces
the interaction of other unprocessed CARP molecules
with the sarcomere.
Taken together, the results obtained inthe present
study appear to corroborate that, once cleaved by cal-
pain 3, the C-terminal part of CARP, as well as
unprocessed CARP molecules, bind more efficiently to
titin N2A, which is consistent with the fact that CARP
nuclear translocation could be controlled by calpain 3
activity.
Regulation of CARP by calpain3 L. Laure et al.
4326 FEBS Journal 277 (2010) 4322–4337 ª 2010 The Authors Journal compilation ª 2010 FEBS
In vitro, CARP can act as a regulator of
transcription factors activity inthe nucleus
Considering that CARP isa known regulator of tran-
scription inthe heart, we investigated the possibility
that CARP might play a similar role on gene regula-
tion inskeletal muscle. The DNA binding activities
of nuclear proteins from C2 myotubes transfected
either with pcDNA3-CARP or with a mock vector
(pcDNA3-lacZ) were compared using a membrane-
based analysis (protein ⁄ DNA array) ofa set of 345
pre-selected transcription factors. Sixty-eight transcrip-
tion factors appear to be regulated by CARP (cut-off
ratio CARP ⁄ lacZ < 0.6 or > 1.3). Apart from pax5,
Fig. 2. CARP cleavage strengthens its interaction with the titin N2A region. (A) Localization of YFP-CARP inthe mouse TA after electrotrans-
fer. CARP is localized both on the sarcomere (lower left panel) andinthe nucleus (lower right panel) ofthe fibers. Scale bars = 20 lm. (B).
Analysis of CARP expression in subcellular compartments of TA transduced by YFP-CARP (detection by GFP-specific western blot) confirms
that CARP is present on the cytoskeleton andthe nucleus inskeletal muscle. (C) Localization of YFP-DNter2 and YFP-Nter inthe mouse TA
after electrotransfer. Similar to CARP, D Nter2 is localized on the sarcomere andinthe nucleus (upper panel), whereas the Nter-CARP fluo-
rescence (lower panel) is scattered throughout the fiber. (D) Yeast two-hybrid assay ofthe interaction of titin with CARP or DNter2. Yeasts
resulting from the mating of clones transformed with titin or CARP were grown on Trp-Leu- (lower panels, control medium) or Trp-Leu-His-
medium (upper panels, selective medium). On the selective medium, the yeasts carrying titin and DNter2 grow more than the yeasts carry-
ing titin and CARP, suggesting that, once cleaved, the association ofthe long C-terminal fragment of CARP and titin is reinforced. (upper
panels). (E) Quantification of FRAP experiments. FRAP was measured in several ROI after photobleaching at 514 nm in mouse TA trans-
duced with YFP-tagged CARP or DNter2. The fluorescence recovery speed is slower when CARP is truncated (i.e. slower inthe presence of
the DNter2 construct compared to the CARP construct) (**P < 0.01, n = 12).
L. Laure et al. Regulationof CARP by calpain 3
FEBS Journal 277 (2010) 4322–4337 ª 2010 The Authors Journal compilation ª 2010 FEBS 4327
whose DNA-binding activity is slightly elevated in the
presence of CARP (on one out ofthe two consensus
sequences considered), all the other transcription fac-
tors are inhibited (Fig. 4A). The 32 factors most signif-
icantly inhibited (cut-off ratio CARP⁄ lacZ < 0.5) are
presented schematically in Fig. S3. Although its inhibi-
tion does not reach this level with this quantification
method, the activity ofthe transcription factor NF-jB,
as measured with three different consensus sequences,
is consistently repressed. This transcription factor
appeared to be particularly interesting considering that
it was previously described as having a role in muscle
atrophy [50] andis abnormally distributed subsequent
to calpain3 deficiency [8].
Using a quantitative ELISA-based method, we con-
firmed that, when CARP is significantly over-expressed
by two-fold, NF-jB p65 transcriptional activity is sig-
nificantly decreased two-fold (P < 0.05; Fig. 4B).
Using the quantification ofits messenger level on
RNA extracts ofthe same cells, we confirmed that this
transcription factor is not transcriptionally regulated
(Fig. 4C) and concluded that itsnuclear translocation
or its activity is modulated by CARP. We also
performed real-time quantitative RT-PCR (qRT-PCR)
of MuRF1, an E3 ubiquitin ligase whose transcription
is up-regulated through NF-jB activation in atrophic
muscle fibers [51–53]. Interestingly, MuRF1 expression
remains constant in this experiment, strongly suggest-
ing that the corresponding signaling pathway regulated
by NF-jB does not involve this protein (Fig. 4D).
Discussion
In the present study, we provide new insights into the
regulation and function ofthe molecular complex
encompassing CARP andcalpain3inthe N2A region.
We identified CARP as anewcalpain3 substrate.
Interestingly, this cleavage regulates CARP subcellular
localization by increasing the strength ofits interaction
with the sarcomere. In addition, we investigated the
modification of transcription factor activities induced
by CARP over-expression and demonstrated CARP-
induced regulationof NF-jB activity.
Even though CARP bears two potential PEST insta-
bility regions, its cleavage does not occur in any of
these sequences but takes place ina strongly structured
coiled-coil region [49]. A core anda bipartite NLS
were previously predicted to be encoded in this region,
the bipartite NLS encompassingthe core NLS
(Fig. 1B) [28]. It should be noted that an additional
core NLS is present downstream of this region (posi-
tion 94–98; Fig. 1B) [19,28,54]. Cleavage by calpain 3
would theoretically disrupt the bipartite NLS and leave
the two core NLS intact on CARP C-terminal region.
The N-terminal region liberated by the cleavage has no
NLS left andis consistently never observed inside the
nucleus. However, it is possible that the loss of one
NLS inthe C-terminal fragment affects the nuclear
transport of this form of CARP, although the sensitiv-
ity ofthe methods we used could not confirm this
hypothesis.
The results obtained inthe present study strongly
suggest that, once cleaved, CARP interaction with the
region N2A is reinforced. CARP interacts with titin-
N2A using a region situated inits second ankyrin
repeat (Fig. 1B) [18]. Bio-informatics analysis indicated
that this region remains structurally unaffected by the
cleavage, whereas the coiled-coil region appears to be
destructed (for methodology, see Materials and meth-
ods). In addition to carrying NLS, this region was
previously proposed to be involvedinthe homodi-
merization of CARP [49]. We therefore propose that
the loss of CARP dimerization promotes the binding to
titin by improving the accessibility ofthe titin-binding
domain. Interestingly, the importance of CARP inter-
action for its function was recently demonstrated in a
Fig. 3.Calpain3 produces a reinforcement of CARP interaction
with titin. (A) CARP localization after electrotransfer of YFP tagged
CARP in TA muscles from wild-type (left) and C3-null (right) mice.
In both models, CARP is localized inthe nucleus and on the sarco-
mere ofthe fibers. Scale bars = 20 lm. (B) Quantification of FRAP
experiments. FRAP was measured for several ROI after photoble-
aching at 514 nm in TA muscles from wild-type and C3-null mice
transduced with YFP-tagged CARP. The fluorescence recovery
speed is slower in muscles of animals bearing functional calpain 3
(**P < 0.01, n = 10).
Regulation of CARP by calpain3 L. Laure et al.
4328 FEBS Journal 277 (2010) 4322–4337 ª 2010 The Authors Journal compilation ª 2010 FEBS
pathophysiological context since pathogenic mutations
result inthe loss of CARP binding to talin and FHL2
and, consequently, inthe perturbation ofits function
[55].
Regulation of function through the control of sub-
cellular localization represents novel information for
a member ofthecalpain family, although it was
previously described for other proteases such as casp-
ases [56]. Several different subcellular traffic mechanisms
controlling transcription are known to be controlled by
protein cleavage. In particular, the liberation and
nuclear translocation of transcription factors can be
triggered by proteasome-mediated degradation of a
partner, as exemplified by the prototypical regulation of
Fig. 4. In vitro, CARP can act as a regulator of transcription factors activity inthe nucleus. (A) Effect of CARP on the DNA-binding activities
of 345 transcription factors. DNA-binding activities were measured on nuclear extracts of C2 myotubes over-expressing either CARP or lacZ
(control). Black boxes highlight the 32 transcription factors that were most significantly inhibited (cut-off ratio CARP ⁄ lacZ < 0.5). Although
less severely, the DNA-binding activity of NF-jB is also inhibited (single white boxes indicate NF-jB DNA-binding activities measured on
three different consensus sequences). Pax5 isthe only factor whose DNA-binding activity is slightly elevated (double white boxes). (B) Quan-
tification of NF-jB DNA-binding activities in C2 myotubes over-expressing CARP. The DNA-binding activity ofthe NF-jB isoform p65 is sig-
nificantly inhibited when CARP is over-expressed. (*P < 0.05, n = 3). (C) Real-time quantification ofthe mRNA level of NF-jB p65 in
myotubes over-expressing CARP. The gene expression of NF-jB p65 does not vary with CARP over-expression (n = 3). (D) Real-time quanti-
fication ofthe mRNA level of MuRF1 in myotubes over-expressing CARP. The gene expression of MURF1 does not vary with CARP over-
expression (n = 3).
L. Laure et al. Regulationof CARP by calpain 3
FEBS Journal 277 (2010) 4322–4337 ª 2010 The Authors Journal compilation ª 2010 FEBS 4329
the factor NF-jB by theprotein IjBa [57]. Addition-
ally, the transmembrane receptor Notch isthe target
of ligand-dependent proteolysis and one ofthe frag-
ments released migrate into the nucleus to regulate
gene expression [58]. The results reported inthe pres-
ent study illustrate a novel mechanism of gene regula-
tion through nuclear translocation inhibition,
combining the destruction of an NLS with an increase
in the affinity ofthe targeted gene regulator for one of
its partners.
The sarcomeric sequestration consecutive to calpain
3 activation might, as a consequence, control CARP-
dependent gene expression. Indeed, MARPs are con-
sidered to be involvedin gene transcription because (a)
Ankrd2 localizes in euchromatin, the region of chro-
matin where active gene transcription occurs [59], is
able to bind to three transcription factors, YB-1, PML
and p53, and enhances the up-regulation of the
p21(WAFI ⁄ CIPI) promoter by p53 [17] and (b) CARP
can bind to DNA [19] andisa negative regulator of
the transcription factor YB1 inthe heart [21]. Interest-
ingly, calpain3 was also reported to participate in the
control of gene expression [2,7–9], suggesting that the
complex calpain3 ⁄ CARP might comprise an axis for
gene regulation. Amongst the possible CARP targets
identified inthe present study, NF-jB p65 DNA bind-
ing activity was confirmed to be inhibited by CARP
over-expression. Interestingly, we previously demon-
strated that calpain3 possibly participates in the
control ofthe NF-jB pathway because calpain 3
deficiency is associated with an altered distribution of
both NF-jB andofits regulator IjBa [8], as well as
with blockade ofthe induction of specific anti-apopto-
tic NF-jB target genes such as c-FLIP [9]. From a
mechanistic point of view, it could be postulated that a
direct interaction between CARP ankyrin repeats and
NF-jB p65 isthe cause ofa cytoplasmic sequestration
(and hence inhibition) of NF-jB, similar to IjB which
associates through itsankyrin repeats with NF-jB
[60]. However, CARP could also act upstream ofa sig-
naling cascade controlling directly NF-jB activity as
the transcription factor is now known to be regulated
by both phosphorylation and acetylation [61]. Interest-
ingly, it was previously reported that the inhibition of
the NF-jB pathway during the induction of apoptosis
induces CARP upregulation, suggesting that a positive
feedback mechanism could exacerbate this phenome-
non [62]. On the other hand, a recent study shows that
the stimulation of NF-jB activity by skeletal muscle
longitudinal stretch up-regulates Ankrd2 expression
through direct stimulation ofits promoter [63]. Taken
together, these studies suggest that the NF-jB pathway
might be a key differential regulator ofthe expression
of the MARPs. This differential regulation might be
necessary to tune muscle signaling pathways with pre-
cision in response to various physiological stimuli.
Under which conditions thepathwayidentified in
the present study is physiologically relevant and how
its dysfunction participates inthe pathogenesis of
LGMD2A represent two important issues that remain
to be addressed. The NF-jB pathwayisa key regula-
tor of numerous cellular events, such as proliferation
and differentiation, and catabolic or apoptotic path-
ways, in many organs. In particular, it was previously
established that NF-jB isa major inducer of muscle
atrophy intheskeletal muscle. Indeed, NF-jB inhibi-
tion in mice models invariably protects against muscle
atrophy, whereas NF-jB activation promotes proteoly-
sis in vivo [51,64–66]. However, in our hands, although
the over-expression of CARP inmuscle cells results in
NF-jB p65 inhibition, it does not affect the expression
of MURF1, which is one ofthe main mediators of
NF-jB-dependent muscle atrophy [51]. It was also pre-
viously suggested that p65 is not the member of the
NF-jB family involvedinthe induction of atrophy
[64]. Taken together, CARP-dependent NF-jB inhibi-
tion therefore appears unlikely to play a role in muscle
atrophy. On the other hand, several studies have sug-
gested a possible involvement of NF-jB inmuscle cell
survival through induction of anti-apoptotic factors
[8,9,67]. Calpain3 deficiency was previously reported
to be associated with a deregulation ofthe NF-jB
pathway and an increase inmuscle fiber apoptosis [8].
The participation of NF-jB signaling inthe pathogen-
esis of LGMD2A is therefore an interesting possibility.
The findings obtained inthe present study lead to a
proposed working hypothesis: inthe absence of calpain
3, CARP nuclear activities would be exacerbated,
which would lead to a decrease in NF-jB activity
(Fig. S4). NF-jB inhibition would impede the protec-
tion ofmuscle from apoptosis, an event leading to
progressive muscle destruction. In line with this
hypothesis, CARP ectopic expression was previously
reported to be able to induce apoptotic cell death in
hepatoma cells [62]. In conclusion, calpain 3, through
its action on CARP, appears to have a central role in
regulating important cell fate-governing pathways.
Materials and methods
Plasmid constructions and antibodies
The sequences encoding full-length DNter1-4 and Nter
CARP were amplified by PCR on a random primed cDNA
library obtained by reverse transcription of murine
129SVter skeletalmuscle RNA (primers indicated in
Regulation of CARP by calpain3 L. Laure et al.
4330 FEBS Journal 277 (2010) 4322–4337 ª 2010 The Authors Journal compilation ª 2010 FEBS
Table 1). PCR products were cloned in pcDNA3.1D ⁄ V5-
His-Topo using the TOPO
Ò
cloning technology (Invitrogen,
Carlsbad, CA, USA). After digestion by XhoI and BamHI,
the inserts ofthe resulting plasmids were subcloned into
pYFP-CFP-HIS, a plasmid carrying the enhanced YFP at
the 5¢ end ofthe cloning site. The plasmids pYFP-C3-CFP
and pYFP-C3-C129S-CFP were previously described and
bear the murine calpain3 coding sequence (wild-type or
C129S protease-dead mutant respectively) between
enhanced YFP in 5¢ and eCFP in 3¢ [3]. The plasmid
pcDNA3-lacZ was obtained from Invitrogen. Every ampli-
fied sequence was confirmed by automated sequencing.
For two-hybrid experiments, the cloning ofthe N2A
region of titin inthe pGAD vector (Clontech, Mountain
View, CA, USA) andof human calpain3inthe pAS vector
(Clontech) were described previously [68]. Thecalpain 3
construct carries the C129S mutation, which invalidates
the protease activity ofcalpain3.The N2A region of titin
(exons 101–110) was PCR amplified (see primers in Table 1)
from a random primed cDNA library obtained by reverse
transcription of an adult human skeletal muscles poly(A)
RNA library (Ambion AM7983; Ambion, Austin, TX,
USA). The PCR product was digested by XmaI and NcoI
and cloned in fusion with the GAL4 DNA-binding domain
in pAS. CARP and DNter2 cDNA were fused to GAL4
activation domain in pGAD. Briefly, CARP and DNter2
were PCR amplified with primers containing the restriction
sites NcoI inthe 5¢ primer and XmaI inthe 3¢ primer
(Table 1). The digested fragments were ligated in EcoRI ⁄
BamHI linearized pGAD. Every amplified sequence was
validated by automated sequencing.
Rabbit polyclonal antibody directed against the epitope
QESEEQQQFRNIFKQ in exon 17 ofthecalpain3 (B3)
was kindly provided by Dr Ahmed Ouali (INRA UR 370,
Saint Genes Champanelle, France) and has been described
previously [8]. NF-jB-specific rabbit polyclonal antibody
was obtained from Chemicon. Mouse monoclonal antibody
specific for the V5 epitope was purchased from Invitrogen.
Horseradish peroxidase linked donkey anti-rabbit IgG and
sheep anti-mouse IgG antibodies were obtained from GE
Healthcare (Piscataway, NJ, USA).
Cell culture and transfection
The NIH3T3 cell line was obtained from the American
Type Culture Collection (Rockville, MD, USA) andthe C2
mouse myoblasts from the ATCC [69]. Fibroblasts and
myoblasts were cultured in DMEM containing gentamicin
(10 lgÆmL
)1
) and supplemented with 10% or 20% fetal
bovine serum (HyClone
Ò
Thermo Scientific, Hudson, NH,
USA), respectively. Myogenic differentiation of C2 cells
was initiated by replacement ofthe growth medium with
DMEM containing 5% horse serum (Gibco
Ò
Invitrogen,
Carlsbad, CA, USA) andthe subsequent maintenance of
the cells in this medium for 4–10 days.
For plasmid transfections, cells were plated (300 000 C2
cells or 1 000 000 NIH3T3 cells per 100 mm dish) and
allowed to grow for 24 h. Transfections were performed
with 6 lg of plasmid and 30 lL of FuGENE 6 transfection
reagent (Roche Applied Science, Indianapolis, IN, USA).
In case of co-transfections, plasmids were mixed at equimo-
lar concentrations. To increase C2 transfection efficiency,
the same transfection method was used a second time
before the start of myogenic differentiation.
Preparation ofprotein samples and
immunoblotting
Cells were washed with NaCl ⁄ P
i
and proteins were
extracted using a buffer containing 20 mm Tris (pH 7.5),
150 mm NaCl, 2 mm EGTA, 1% Triton X-100, 2 lm E64
and protease inhibitors (Complete mini protease inhibitor
cocktail; Roche Applied Sciences). After centrifugation at
10 000 g for 10 min at 4 °C, the supernatants were recov-
ered for western blot analysis.
The muscle proteins ofthe different sub-cellular compart-
ments were extracted using the ProteoExtract
Ò
Subcellular
Proteome Extraction Kit (S-PEK; Calbiochem
Ò
Merck
KGaA, Darmstadt, Germany). Briefly, TA muscles were
homogenized in 1 mL of lysis buffer with a Fast-Prep instru-
ment (MP-Biomedicals, Solon, OH, USA), and proteins of
the cytosol, membranes, nucleus and cytoskeleton were
extracted in accordance with the manufacturer’s instructions.
The samples were denatured before SDS ⁄ PAGE using
LDS NuPage buffer (Invitrogen) supplemented with 100 mm
dithiothreitol. Sample protein concentrations were deter-
mined by the BCA methodology (Thermo Scientific, Rock-
ford, IL, USA). Protein samples were submitted to
SDS ⁄ PAGE in precast 4–12% acrylamide gradient gels (Nu-
Table 1. Primers used for cloning.
Plasmid Insert
Upper primer
Lower primer
pGAD-CARP Full-length
CARP
CGCCATGGCAATGATGGTACTGAAAGTAGAGG
CGGCCCGGGAACTGATTAAGAGTCTGTCG
pGAD-DNter2 CARP from
71 to 319
GAGCCATGGAACAACGGAAAAGCGAGAAAC
CGGCCCGGGAACTGATTAAGAGTCTGTCG
pYFP-CARP-
CFP-HIS
Full-length
CARP
1–319
CACCATGATGGTACTGAGAG
GAATGTAGCTATGCGAGAGTTC
pDNter1 CARP from
30 to 319
CACCATGGCCGAGTTCAGAAATGGAGAAG
GAATGTAGCTATGCGAGAGTTC
pDNter2 CARP from
71 to 319
CACCATGCTGAAGACACTTCCGGCCAACAG
GAATGTAGCTATGCGAGAGTTC
pDNter3 CARP from
102 to 319
CACCATGCTGAAAGCTGCGCTGGAGAAC
GAATGTAGCTATGCGAGAGTTC
pDNter4 CARP from
124 to 319
CACCATGACCAAAGTTCCAGTTGTGAAGG
GAATGTAGCTATGCGAGAGTTC
pCarpNter CARP from
1to70
CACCATGATGGTACTGAGAG
GAATGTAGCTATGCGAGAGTTC
L. Laure et al. Regulationof CARP by calpain 3
FEBS Journal 277 (2010) 4322–4337 ª 2010 The Authors Journal compilation ª 2010 FEBS 4331
[...]... Kivela R, Komi P, Komulainen J, Kainulainen H & Kyrolainen H (2009) Effects of fatiguing jumping exercise on mRNA expression of titin-complex proteins and calpains J Appl Physiol 106, 1419–1424 31 Aihara Y, Kurabayashi M, Saito Y, Ohyama Y, Tanaka T, Takeda S, Tomaru K, Sekiguchi K, Arai M, Nakamura T et al (2000) Cardiacankyrinrepeatproteinisa novel marker ofcardiac hypertrophy: role of M-CAT... K, Kato S, Ohama E, Sato K, Fukayama M, Mori S et al (2002) Altered expression ofcardiacankyrinrepeatproteinandits homologue, ankyrinrepeatprotein with PEST and proline-rich region, in atrophic muscles in amyotrophic lateral sclerosis Pathobiology 70, 197–2 03 Murphy RM, Goodman CA, McKenna MJ, Bennie J, Leikis M & Lamb GD (2007) Calpain- 3is autolyzed and hence activated in human skeletal muscle. .. 37 , 1974–1984 Franch HA & Price SR (2005) Molecular signaling pathways regulating muscle proteolysis during atrophy Curr Opin Clin Nutr Metab Care 8, 271–275 Ishiguro N, Baba T, Ishida T, Takeuchi K, Osaki M, Araki N, Okada E, Takahashi S, Saito M, Watanabe M et al (2002) Carp, acardiac ankyrin- repeated protein, anditsnew homologue, Arpp, are differentially expressed in heart, skeletal muscle, and. .. NM_007601 .3 CARP Ankyrinrepeat domain 1 NM_0 134 68 NF-jB p65 Reticuloendotheliosis viral oncogene homolog A (Rela) NM_009045 MurF1 Tripartite motif-containing 63 (Trim 63) , NM_001 039 048 P0 Acidic ribosomal phosphoprotein XR_004667 433 2 Upper primer Probe Lower primer mC3.F ACAACAATCAGCTGGTTTTCACC mC3.P TGCCAAGCTCCATGGCTCCTATGAAG mC3.R CAAAAAACTCTGTCACCCCTCC mCARP.F CTTGAATCCACAGCCATCCA mCARP.P CATGTCGTGGAGGAAACGCAGATGTC... proteinis preferentially induced in atrophic myofibers of congenital myopathy and spinal muscular atrophy Pathol Int 53, 6 53 658 Nakada C, Tsukamoto Y, Oka A, Nonaka I, Takeda S, Sato K, Mori S, Ito H & Moriyama M (20 03) Cardiacrestricted ankyrin- repeated proteinis differentially induced in duchenne and congenital muscular dystrophy Lab Invest 83, 711–719 Nakamura K, Nakada C, Takeuchi K, Osaki M,... quantified using the Bradford technique (Bio-Rad, Hercules, CA, USA) Theprotein ⁄ DNA assays were carried out on 25 lg of total nuclear proteins using the TranSignal Protein ⁄ DNA Combo Array (Affymetrix, Santa Clara, CA, USA) in accordance with the manufacturer’s instructions DNA-binding activity is proportional to the intensity ofthe spot obtained after membrane revelation Films were scanned and spot... Calpain 3- mediated cleavage of CARP reduces its effects on transcription factors Regulationof CARP by calpain3 Doc S1 Construction and characterization ofthecalpain3 deficient animal model This supplementary material can be found inthe online version of this article Please note: As a service to our authors and readers, this journal provides supporting information supplied by the authors Such materials... M, Coopman P, Beckmann JS, Mangeat P & Lefranc G (2001) Pathophysiology of limb girdle muscular dystrophy type 2A: hypothesis andnew insights into the IkappaBalpha ⁄ NF-kappaB survival pathwayinskeletalmuscle J Mol Med 79, 254–261 14 Sorimachi H, Kinbara K, Kimura S, Takahashi M, Ishiura S, Sasagawa N, Sorimachi N, Shimada H, Tagawa K, Maruyama K et al (1995) Muscle- specific calpain, p94, responsible... Tidball JG & Spencer MJ (2004) Null mutation ofcalpain3 (p94) in mice causes abnormal sarcomere formation in vivo andin vitro Hum Mol Genet 13, 137 3– 138 8 Kramerova I, Kudryashova E, Venkatraman G & Spencer MJ (2005) Calpain3 participates in sarcomere remodeling by acting upstream ofthe ubiquitin-proteasome pathway Hum Mol Genet 14, 2125–2 134 433 4 13 Baghdiguian S, Richard I, Martin M, Coopman P,... overexpressing calsequestrin Cell Calcium 32 , 21–29 34 Zolk O, Frohme M, Maurer A, Kluxen FW, Hentsch B, Zubakov D, Hoheisel JD, Zucker IH, Pepe S & Regulationof CARP by calpain3 35 36 37 38 39 40 41 42 43 44 45 Eschenhagen T (2002) Cardiacankyrinrepeat protein, a negative regulator ofcardiac gene expression, is augmented in human heart failure Biochem Biophys Res Commun 2 93, 137 7– 138 2 Barash IA, Mathew . A new pathway encompassing calpain 3 and its newly identified substrate cardiac ankyrin repeat protein is involved in the regulation of the nuclear factor-jB pathway in skeletal muscle Lydie. NM_007601 .3 mC3.F ACAACAATCAGCTGGTTTTCACC mC3.P TGCCAAGCTCCATGGCTCCTATGAAG mC3.R CAAAAAACTCTGTCACCCCTCC CARP Ankyrin repeat domain 1 NM_0 134 68 mCARP.F CTTGAATCCACAGCCATCCA mCARP.P CATGTCGTGGAGGAAACGCAGATGTC mCARP.R. 31 9 CACCATGGCCGAGTTCAGAAATGGAGAAG GAATGTAGCTATGCGAGAGTTC pDNter2 CARP from 71 to 31 9 CACCATGCTGAAGACACTTCCGGCCAACAG GAATGTAGCTATGCGAGAGTTC pDNter3 CARP from 102 to 31 9 CACCATGCTGAAAGCTGCGCTGGAGAAC GAATGTAGCTATGCGAGAGTTC pDNter4