1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Solid state physics - v karpus

182 3K 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 182
Dung lượng 6,35 MB

Nội dung

Solid State Physics • Kietųjų kūnų fizika Физика твердого тела • Festkörperphysik Vytas Karpus (PFI: 364 k.; tel.: 2619475 (of.), 2313217 (h.); karpus@pfi.lt) http://www.pfi.lt/studies/doctor_l.html • C Kittel, Introduction to Solid State Physics (John Willey & Sons, 1996) Ч Киттель, Введение в физику твердого тела (Москва: Наука, 1978) • N W Ashcroft and N D Mermin, Solid State Physics, (Holt, Rinehart, and Winston, 1976) Н Ашкрофт, Н Мермин, Физика твердого тела (Москва: Мир, 1979) • J M Ziman, Principles of the Theory of Solids (Cambridge University Press, 1972) Дж Займан, Принципы теории твердого тела (Москва: Мир, 1974) • А С Давыдов, Теория твердого тела (Москва: Наука, 1976) • В Л Бонч-Бруевич, С Г Калашников, Физика полупроводников (Москва: Наука, 1977) • A Juodviršis, M Mikalkevičius, S Vengris, Puslaidininkių fizikos pagrindai (Vilnius: Mokslas, 1985) • A Matulis, Kietojo kūno fizika (Vilnius: Petro ofsetas, 2000) • V Karpus, Kietųjų kūnų fizika Kristalinis būvis (Vilnius: Ciklonas, 2002) Physics: Lecture (2004) V Karpus, Solid State Crystal structures The crystalline state = the equilibrium state of solids Experimental fact or theorem? Crystals: • long-range order • periodicity Investigations of symmetry of crystals (mineralogy) Crystallography: Symmetry: • point symmetry • translation symmetry • 17–18th c Steno (1638–1686) Hẵy (1743–1822) Hessel, Bravais, Schưnflies, • 19th c Fedorov (Е С Федоров) classification of crystals V Karpus, Solid State Physics: Lecture (2004) Translation symmetry atoms & equivalent points primitive cell a2 Wigner–Seitz cell a1 crystal structure/lattice Bravais lattice lattice vectors l = n1a1 + n2a + n3a , n i = , ±1, ±2 , K Vcell = (a1[a 2a ]) vectors of primitive translations translation operator ˆ Tl f (r ) = f (r + l ) atomic positions ˆ Tl = exp(l∇) R (n0 ) = l n + ρα α V Karpus, Solid State Physics: Lecture (2004) Oh Point symmetry Schönflies O Herman-Mauguin mirror plane σ n m rotation-reflection axis Sn Cn i n inversion centre rotation axis rotation-inversion axis i Cn Th Td T Oh , Th Oh , T h O, Oh T, Td , Th Td O h , Td O h , Td V Karpus, Solid State Physics: Lecture (2004) Point groups A set of point symmetry operations of a body constitutes its point group Group A set of elements A, B, C, is called a group G if a law of their “multiplication” is defined, and the following conditions are satisfied: Examples of point groups: • Cn = rotations of Cn-axis • O = all rotations of a cube • if A and B ∈ G, then AB ∈ G • Oh = Ci ì O ã multiplication is associative, (AB)C = A(BC) • T = all rotations of a tetrahedron • the set contains an element E such that AE = EA = A ã Th = Ci ì T ã for all A ∈ G there exist B such that AB = BA = E • Td (4 C3 , S4 , and σ) • Cnh (C1h ≡ Cs ) , Cnv , Dn (D2 ≡ V ) V Karpus, Solid State Physics: Lecture (2004) Classification of crystals System Parameters of crystallographic cell Lattice type Point group Triclinic (T) a≠b≠c α≠β≠γ P C1 , Ci Monoclinic (M) a≠b≠c α = γ = ½π ≠ β P, C C2 , Cs , C2h Orthorhombic (O) a≠b≠c α = β = γ = ½π P, C, I, F D2 , C2v , D2h Tetragonal (Q) a=b≠c α = β = γ = ½π P, I C4 , S4 , C4h , D4 , C4v , D2d , D4h Trigonal a=b=c α = β = γ ≠ ½π R C3 , C3i , D3 , C3v , D3d Hexagonal (H) a=b≠c α = β = ½π, γ = 2π/3 P C6 , C3h , C6h , D6 , C6v , D3h , D6h Cubic (K) a=b=c α = β = γ = ½π P, I, F T , Th , Td , O , O h or rhombohedral (R) Hessel 1830 Bravais 1848 Schönflies and Fedorov 1890-1894 V Karpus, Solid State Physics: Lecture (2004) Miller indices wc c b a ua vb (hkl) [130] (110) [hkl] [[uvw]] c (110) 1 : : = h:k :l u v w [110] b 31 22 a b a (510) u :v: w = h:k :l V Karpus, Solid State Physics: Lecture (2004) Examples of crystal structures: Ionic crystals Na Cs - Cl + Cl Bravais lattice: fcc σ= (σ = 8) coordination number = a = 5.63 Å KCl, AgBr, MgO, MnO + - Bravais lattice: sc σ= coordination number = a = 4.11 Å CsBr, CsI, β´-CuZn V Karpus, Solid State Physics: Lecture (2004) Examples of crystal structures: Metallic crystals bcc c hcp 8 fcc b a c Bravais lattice: bcc σ= (σ = 2) coordination number = aNa = 4.23 Å Li, Na, K, Rb, Cs a 7 a1 = (− a + b + c ) a = (a − b + c ) a = (a + b − c ) 6 b Bravais lattice: hexagonal σ= (σ = 6) coordination number = 12 c/a = 1.633 Mg, Cd, Zn Bravais lattice: fcc σ= (σ = 8) coordination number = 12 Al, Cu, Ag, Ne a1 = (b + c ) a = (c + a ) a = (a + b ) V Karpus, Solid State Physics: Lecture (2004) Examples of crystal structures: Covalent crystals diamond structure Bravais lattice: fcc σ= (σ = 8) coordination number = aC = 3.56 Å Si, Ge, α-Sn zinc blende structure Bravais lattice: fcc σ= (σ = 8) coordination number = aZnS = 5.41 Å GaAs, AlAs, ΙnP, CdTe V Karpus, Solid State Physics: Lecture (2004) [A Mooradian, in: Laser Handbook (North Holland Publ., 1972)] Raman scattering C.V Raman, Indian J Phys 387 (1928) C.V Raman and K.S Krishnan, Nature 121 501 (1928) G Landsberg and L Mandelstam, Naturwiss 16 557 (1928) (1930 Nobel prize) ∆Ω = mω N qλ anti − Stokes = Stokes + N qλ = exp(−hω / k BT ) hω T = 33.7 meV hω L = 36.7 meV exp hω p = 16 meV theor hω p = 16.8 meV (n = 1.75 1017 cm −3 ) V Karpus, Solid State Physics: Lecture 16 (2005) Brillouin scattering A Hassine et al., J Appl Phys 77 6569 (1995) [L Brillouin, Ann Phys (Paris) 17 88 (1922)] Ω = Ω'±ω qλ k = k '±q ˆ ω qλ = sλ (q) q ∆Ω = m2Ω ˆ sλ (q) sin(ϑ / 2) c / nr The frequency shift depends • on the frequency of the incident light • on the scattering angle V Karpus, Solid State Physics: Lecture 16 (2005) Bragg diffraction 2Λ sin α = mλ Acousto-optics Relation with the Brillouin scattering m = 0,±1,±2, K k '−k = mq 2k sin α = mq Frequency shift ~ ~ Ω´= Ω comoving reference frame The Doppler shift: The first experimental observations: • P Debye and F W Sears, Proc Nat Acad Sci (USA) 18 409 (1932) • R Lucas and P Biquard, J Phys Rad 464 (1932) velocity of the frame ~ Ω = Ω + Qs lab frame wavevector comoving frame Ω´= Ω + mω qλ V Karpus, Solid State Physics: Lecture 16 (2005) Raman – Nath diffraction Λ (sin α − sin α i ) = mλ m = 0,±1,±2, K C.V Raman and N.C Nagendra Nath, Proc Indian Acad Sci 406, 413 (1935) Proc Indian Acad Sci 75, 119, 459 (1936) Schaeffer – Bergmann experiment (1938) V Karpus, Solid State Physics: Lecture 16 (2005) Resumé Neutron spectroscopy NB Umklapp and normal processes • Raman scattering: Combination scattering Raman scattering Brillouin scattering Ω' = Ω m ω Acousto-optics Bragg diffraction Raman – Nath diffraction V Karpus, Solid State Physics: Lecture 16 (2005) Anharmonic effects Thermal expansion Phonon-phonon interaction • phonon liftime • thermal conductivity V Karpus, Solid State Physics: Lecture 17 (2005) Thermal expansion ∂L α= L ∂T linear expansivity ∂V β= V ∂T va ( R) = va ( R ( 0) ) + ΦU − Φ 3U Φ k BT U = 2Φ α=1β α = const T > ΘD Grüneisen theory (quasi-harmonic approximation) [E Grüneisen, Ann Physik 26 393 (1908); Handb Phys 10 (1926)] F = F (V , T ) = const + ⎛ ∆V ⎞ BV ⎜ ⎟ + Fph ⎝ V ⎠ ω qλ ∆V = −γ V Grüneisen parameter ∆ω qλ the free energy of the static lattice ω qλ hω qλ ⎞ ⎛ ⎟ Fph = k BT ∑ ln⎜ 2sh ⎜ 2k BT ⎟ q ,λ ⎝ ⎠ α = γ K cv ∆ω qλ = −γ qλ γ= K =− ⎛ ∂V ⎜ V ⎜ ∂p ⎝ ⎞ ⎟ ⎟ ⎠T cv cv,qλ = ∆V V ∑γ λ c qλ v,qλ q, ∂N qλ hω qλ V ∂T V Karpus, Solid State Physics: Lecture 17 (2005) Thermal expansion (contraction) of solids α = γ K cv guitar string effect [G.K White, Contemp Phys 34 193 (1993)] V Karpus, Solid State Physics: Lecture 17 (2005) Phonon-phonon interaction hω q1λ1 = hω q 2λ2 + hω q3λ3 q1 = q + q hω q1λ1 + hω q 2λ2 = hω q3λ3 q1 + q = q Selection rules (Peierls 1955): no solutions for T1 + T1 → T2 T1 + T1 → T1 T1 + L → T2 L + T→ L T1 + L → L T1 + T1 → L T2 + T2 → T2 T1 + T2→ T L+L →L 1,2 T2 + L → L V Karpus, Solid State Physics: Lecture 17 (2005) Thermal conductivity Fourier law jQ = −κ ∇T thermal current density thermal conductivity [κ ] = W cm K cal W = 4.186 s cm K cm K Phonon contribution jQ = Electron contribution ph dT dΩ v x uT ( x ) = − cv s 2τ ph dx 4π ∫ ph κ ph = cv s 2τ ph el κ el = cv v 2τ el V Karpus, Solid State Physics: Lecture 17 (2005) Thermal conductivity: Metals Fermi Wiedemann – Franz law (1853) κ el mv c = σ 3e n el v = π kB T 3e 3k B T = 2e εF mv el cv Boltzmann π2 nk B k BT / ε F ⎧2.44 10 −8 WΩ / K ⎪ Lorenz number: ⎨1.11 10 −8 WΩ / K ⎪2.22 10 −8 WΩ / K Boltzmann ⎩ Fermi k BT nk B Fermi Boltzmann Drude mistake experiment Ag Al κ/σT (10-8 WΩ/K2) el κ el cv v 2τ el k T = ph ~ B >> κ ph cv s τ ph ms Li 2.22 2.31 2.14 ⎞ m⎛ s ⎜ ⎟ ms ≈ 1.6 K × m0 ⎜ 10 cm/s ⎟ ⎝ ⎠ κexperiment (W cm-1K-1) ph κ ph = cv Li2τ ph Cu s 2 Au Ag Al T = 373 K 0.73 3.82 3.1 4.17 2.3 T = 273 K 0.71 3.85 3.1 4.18 2.38 el κ el =κ1 ≠ κ v 2τ elin metals cv (T ) el cv ∝ T τ el ∝ T −1 V Karpus, Solid State Physics: Lecture 17 (2005) Phonon-phonon scattering Thermal conductivity Dielectrics ph v ? Vanh(4) τ ph = τ ph (T ) q1 = q + q Peierls law only the Umklapp processes contribute to the thermal resistivity -1 τ ph = exp(−Θ D / 3.5 T ) [H.E Jackson and C.T Walker, PRB 1428 (1971)] κ = c s τ ph Vanh(3) High temperatures, T >> ΘD τ ph ⎧ N ∝T ∝⎨ N ∝T2 ⎩ κ ∝ 1/ T n anh (3) anh (4) n = 1− Low temperatures, T lph -ph (N) / τ ph

Ngày đăng: 27/03/2014, 11:27

TỪ KHÓA LIÊN QUAN