1. Trang chủ
  2. » Tất cả

Skkn rèn luyện kỹ năng giải phương trình, bất phương mũ và lôgarit bằng phương pháp sử dụng tính đơn điệu của hàm số cho học sinh lớp 12

24 6 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 24
Dung lượng 3,99 MB

Nội dung

MỤC LỤC Phần Mở đầu 1 Lí chọn đề tài Mục đích nghiên cứu Đối tượng nghiên cứu Phương pháp nghiên cứu Phần Nội dung Cơ sở lý luận .3 Thực trạng 3 Giải pháp thực 3.1 Kiến thức trang bị 3.2 Phương pháp 3.3 Các dạng toán cụ thể Hiệu sáng kiến kinh nghiệm .17 Phần Kết luận kiến nghị 20 Kết luận .20 Kiến nghị 20 skkn PHẦN I MỞ ĐẦU Lí chọn đề tài Thế giới ngày phát triển nhanh chóng với phát triển khoa học, cơng nghệ, truyền thơng Vì mục tiêu giáo dục đặt phát triển xã hội người phát triển tồn diện để đáp ứng nghiệp cơng nghiệp hóa, đại hóa đất nước Nâng cao chất lượng dạy học nói chung, dạy học mơn Tốn nói riêng yêu cầu cấp bách Một khâu then chốt để thực yêu cầu đổi nội dung phương pháp dạy học Chủ đề phương trình, bất phương trình mũ lơgarit có vị trí quan trọng chương trình mơn Tốn bậc trung học phổ thơng (THPT), nội dung khơng thể thiếu kì thi tốt nghiệp THPT thi học sinh giỏi (HSG) lớp 12 Phương trình, bất phương trình mũ lơgarit đa dạng phong phú, để giải đòi hỏi học sinh phải có vốn kiến thức, kĩ giải phương trình, bất phương trình tích lũy từ đầu cấp học Rèn luyện kĩ giải phương trình, bất phương trình mũ lơgarit vừa mục đích vừa phương tiện làm cho học sinh nắm kiến thức bản, rèn luyện kĩ suy luận tốn học, tốn học hóa tình thực tế rèn luyện phẩm chất tư linh hoạt, độc lập, sáng tạo, cẩn thận, xác góp phần phát triển lực toán học cho học sinh Trong đề thi tốt nghiệp THPT HSG để giải phương trình, bất phương trình mũ lơgarit mức độ vận dụng vận dụng cao đòi hỏi học sinh phải có kỹ biến đổi linh hoạt vận dụng nhiều kiến thức học, mà kiến thức hay dùng tính chất đơn điệu hàm số Trong thực tế nhiều học sinh gặp dạng phương trình thường khơng giải được, phần địi hỏi tư cao chương trình tốn THPT lại có thời gian để dạy phần Do để giúp học sinh tiếp cận biết cách giải phương trình, bất phương trình mũ lơgarit phương pháp sử dụng tính đơn điệu hàm số tơi mạnh dạn đề xuất sáng kiến: ‘‘Rèn luyện kỹ giải phương trình, bất phương mũ lôgarit phương pháp sử dụng tính đơn điệu hàm số cho học sinh lớp 12’’ Mục đích nghiên cứu - Thiết kế chủ đề dạy học phù hợp, xây dựng quy trình sử dụng hiệu để rèn luyện kỹ tự học cho học sinh dạy học phần giải phương trình, bất phương trình mũ lơgarit qua bồi dưỡng phát triển lực tự học cho học sinh - Rèn luyện cho học sinh kỹ giải tập phương pháp hàm số - Trang bị cho học sinh kiến thức vững vàng, chuẩn bị bước vào kỳ thi HSG cấp tỉnh lớp 12 thi tốt nghiệp THPT skkn - Học sinh nhớ khắc sâu thêm kiến thức liên quan đến hàm số dạng toán khác có liên quan giải hệ phương trình, bất phương trình, chứng minh bất đẳng thức, tốn phương trình, hệ phương trình, bất phương trình chứa tham số… Đối tượng nghiên cứu Chủ đề phương trình, bất phương trình mũ lơgarit chương trình giải tích lớp 12 Phương pháp nghiên cứu 4.1 Phương pháp nghiên cứu lý thuyết - Nghiên cứu tài liệu cơng trình nghiên cứu đổi phương pháp dạy học (PPDH) theo hướng tích cực hóa việc học học sinh - Nghiên cứu cấu trúc nội dung chương trình giải tích lớp 12 4.2 Phương pháp chun gia Gặp gỡ, trao đổi, tiếp thu ý kiến đồng nghiệp để làm sở cho việc nghiên cứu đề tài 4.3 Phương pháp thực tập sư phạm Thực nghiệm sư phạm trường THPT Thọ Xuân 4, tiến hành theo quy trình đề tài nghiên cứu khoa học giáo dục để đánh giá hiệu đề tài nghiên cứu 4.4 Phương pháp thống kê toán học Sử dụng phương pháp thống kê toán học để thống kê, xử lý, đánh giá kết thu skkn PHẦN II NỘI DUNG Cơ sở lý luận Muốn học tốt mơn Tốn em học sinh phải nắm vững kiến thức môn học cách có hệ thống, biết vận dụng lý thuyết linh hoạt vào dạng tập Điều thể việc học đơi với hành, địi hỏi học sinh phải có tư lơgic cách biến đổi linh hoạt Giáo viên cần định hướng cho học sinh học nghiên cứu mơn Tốn cách có hệ thống chương trình học phổ thơng, vận dụng lý thuyết vào làm tập, phân dạng tập tổng hợp cách giải Qua nghiên cứu muốn nêu lên vấn đề làm giúp cho học sinh THPT có thêm phương pháp giải gặp tốn giải phương trình, bất phương trình mũ lơgarit coi khơng mẫu mực mức độ vận dụng vận dụng cao Tuy nhiên gặp tốn giải phương trình, bất phương trình mũ lơgarit có nhiều tốn địi hỏi học sinh phải biết vận dụng kết hợp nhiều kiến thức, kĩ phân tích biến đổi để đưa phương trình trình mũ lơgarit từ dạng phức tạp dạng đơn giản Trong giới hạn sáng kiến kinh nghiệm (SKKN) hướng dẫn học sinh bảy dạng phương trình, bất phương trình mũ lơgarit thường gặp, số toán vận dụng biến đổi số dạng toán thường gặp thi ôn tốt nghiệp THPT ôn thi HSG Phương pháp “Sử dụng tính đơn điệu hàm số để giải phương trình, bất phương trình mũ lơgarit” có tính đại, cách giải hay, ngắn gọn độc đáo Do giảm tải kiến thức bậc THPT mà số lượng tập sách giáo khoa (SGK) dùng phương pháp để giải cịn ít, SGK giới thiệu dạng tập mang tính chất tham khảo, phương pháp khơng phổ biến bắt buộc Chính lẽ mà đại đa số học sinh sử dụng phương pháp cách máy móc chưa biết sử dụng Đối với học sinh khá, giỏi việc tiếp cận phương pháp để giải toán vấn đề cần thiết giúp cho em có kỹ năng, kỹ xảo việc giải tập phương pháp hàm số đồng thời chuẩn bị cho em kiến thức vững vàng đạt kết cao kì thi tốt nghiệp THPT HSG lớp 12 Thực trạng Do học sinh trường vùng nông thôn nên việc học tập nhiều hạn chế kiến thức trung học sở yếu, tiếp thu chậm, chưa tự hệ thống kiến thức Khi gặp tốn chưa phân loại định hình cách giải, Qua việc khảo sát thi tốt nghiệp THPT, thi HSG lớp 12 việc học tập, làm tập dạng phương trình, bất phương trình có sử dụng phương pháp hàm số Tôi nhận thấy học sinh thường bỏ qua khơng có hướng giải Học sinh hoang mang gặp phương trình, bất phương trình mà trước dễ điểm, gặp khơng khó khăn phải sử dụng phương pháp hàm số để giải skkn Các tập dùng phương pháp để giải thông thường tập dạng nâng cao, khó thuộc dạng khơng mẫu mực Phương pháp hàm số xem phương pháp giải toán đại, phương pháp sử dụng hay dạy phổ biến bậc THPT Khả vận dụng phương pháp bị hạn chế học sinh trung bình yếu, có hiệu cao học sinh giỏi Ở bậc THPT, tập SGK dùng phương pháp hàm số cịn q nên học sinh học cách qua loa Trong đề thi tuyển sinh số năm gần đề thi HSG lớp 12 hay đưa toán phải sử dụng phương pháp để giải Giải pháp thực Nhằm giúp cho học sinh có kĩ giải tập phương pháp hàm số, giúp cho em có kiến thức vững vàng có kết cao kì thi tuyển sinh Giáo viên nên mạnh dạn giới thiệu phương pháp cho học sinh lớp 12 tiết tự chọn Giáo viên phải dựa vào trình độ lớp để đưa dạng tập từ đến nâng cao mang tính vừa sức, giúp cho em quen dần với phương pháp Đối với học sinh ôn thi HSG ôn thi tốt nghiệp THPT cần tạo thành chuyên đề rõ ràng, học sinh biết nhận dạng có kỹ làm tốt 3.1 Kiến thức trang bị * Định nghĩa hàm số đơn điệu: Kí hiệu khoảng đoạn nửa khoảng Giả sử hàm số xác định Ta nói: + Hàm số đồng biến + Hàm số nghịch biến * Nhận xét: Cho đơn điệu , ta có: Với * Để chứng minh tính đơn điệu hàm số ta dựa vào tính chất sau: + Tính chất 1: Nếu , hữu hạn điểm hàm số đồng biến + Tính chất 2: Nếu , hữu hạn điểm hàm số nghịch biến [3] * Để giải phương trình, bất phương trình mũ lơgarit phương pháp hàm số ta thường sử dụng tính chất sau: + Tính chất 3: Nếu hàm số đồng biến (hoặc nghịch biến) liên tục thì: skkn - Phương trình có nhiều nghiệm phương trình trình tập nghiệm khoảng Do nghiệm phương - + Tính chất 4: Nếu hàm số đồng biến hàm số nghịch biến tập phương trình có nhiều nghiệm thuộc Do nghiệm phương trình tập + Tính chất 5: Nếu hàm số * đồng biến * nghịch biến + Tính chất 6: Hàm số thì là nghiệm phương trình liên tục : thì: thì: đồng biến nghịch biến Hàm số đồng biến nghịch biến + Tính chất 7: Tổng hàm số đồng biến (nghịch biến) đồng biến (nghịch biến) + Tính chất 8: Tích hàm số dương đồng biến (nghịch biến) đồng biến (nghịch biến) + Tính chất 9: Cho hàm số liên tục tập Phương trình có nghiệm tập Bất phương trình có nghiệm tập Bất phương trình có nghiệm với Bất phương trình có nghiệm tập Bất phương trình có nghiệm với 3.2 Phương pháp Giải toán phương pháp hàm số phương pháp khó, phương pháp thường dùng để giải tập khó có dạng khơng mẫu mực Để giúp cho hoc sinh phân tích tốn tìm phương pháp giải, tơi dạy học sinh tiến hành theo bước sau đây: + Bước 1: Nhận dạng, biến đổi phương trình, bất phương trình dạng thích hợp + Bước 2: Thiết lập hàm số + Bước 3: Chứng minh hàm số đơn điệu (đồng biến nghịch biến) + Bước 4: Dựa vào tính chất đơn điệu hàm số để giải kết luận skkn Cụ thể: Bước 1: Nhận dạng Đây bước quan trọng Thông thường toán dùng phương pháp để giải ta nhận dạng sau: - Phương trình, bất phương trình mũ lôgarit không mẫu mực, tức dạng phương trình, bất phương trình: + Khơng thể sử dụng phép biến đổi thông thường biến đổi tương đương sử dụng phương pháp đặt ẩn phụ để tìm nghiệm tốn + Khơng thuộc vào dạng tập học phương pháp giải trình bày SGK phổ thông - Mối liên hệ hai vế phương trình Bước 2: Thiết lập hàm số Ở bước yêu cầu học sinh phải biết biến đổi phương trình, bất phương trình dạng thích hợp như: quy tắc hàm số ta cần xác lập Bước 3: Chứng minh tính chất đơn điệu hàm số Để chứng minh tính đơn điệu hàm số ta dùng: Tính chất Tính chất Việc chứng minh tính đơn điệu hàm số đơn giản phương pháp đạo hàm Bước 4: Kết luận - Nếu từ tính chất đơn điệu hàm số ta suy nghiệm toán giải kết thúc - Nếu tốn cho biến đổi thành toán đơn giản phải tiếp tục dùng phương pháp khác để giải tìm nghiệm tốn dừng lại.[2] 3.3 Các dạng toán cụ thể - Để giải tập phương trình, bất phương trình mũ lơgarit cách sử dụng tính đơn điệu hàm số thường chia thành dạng sau: Dạng 1: Giải phương trình với hàm số đơn điệu * Để giải phương trình ta tiến hành sau: Bước 1: Tìm tập xác định phương trình đưa phương trình dạng (nếu chưa có dạng trên) Bước 2: Xét hàm số Chứng minh hàm số đồng biến hay nghịch biến Bước 3: Tìm số cho Lúc phương trình có nghiệm (Chúng ta nhẩm nghiệm sử dụng máy tính cầm tay để tìm nghiệm phương trình) Bước 4: Kết luận.[2] - Chú ý: skkn + Nếu hàm số đồng biến hay nghịch biến khoảng khoảng có tối đa nghiệm + Phương trình với hàm số đơn điệu số thực giải tương tự + Học sinh phải có khả nhận biết hàm số đơn điệu * Một số ví dụ áp dụng: Ví dụ 1: Phương trình có nghiệm? A B C D Hướng dẫn giải: Với phương trình sử dụng phương pháp đưa số Khi gặp dạng thông thường đặt hai vế ẩn , nhiên hai vế có hệ số nên ta đặt Lời giải: Điều kiện: Phương trình Đặt Vế phải hàm nghịch biến, vế trái số nên phương trình có nghiệm Mà nghiệm phương trình Suy nghiệm phương trình cho Chọn B Ví dụ 2: Số nghiệm phương trình A B C D Hướng dẫn giải: Với phương trình thường chuyển vế xét hàm Lời giải: Điều kiện: Xét hàm Ta có Suy với thỏa mãn nghịch biến khoảng xác định Ta có bảng biến thiên (BBT) skkn Dựa vào BBT suy phương trình cho có hai nghiệm phân biệt Chọn C Dạng 2: Giải phương trình với hàm số đồng biến, hàm số nghịch biến * Để giải toán ta tiến hành sau: Bước 1: Tìm tập xác định phương trình đưa phương trình dạng Bước 2: Xét hàm số Chỉ rõ hàm số đồng biến hàm số nghịch biến Bước 3: Tìm số cho Lúc phương trình có nghiệm Bước 4: Kết luận.[2] - Chú ý: Nếu khơng tìm nghiệm phương trình vơ nghiệm ta phải dùng phương pháp khác để phương trình vơ nghiệm * Một số ví dụ áp dụng: Ví dụ 1: Số nghiệm phương trình A B C D Hướng dẫn giải: Yêu cầu học sinh xét tính đơn điệu hai hàm số hai Lời giải: Ta có hàm đồng biến; hàm nghịch biến nên phương trình có nghiệm Mà suy nghiệm Chọn B Ví dụ 2: Phương trình có nghiệm? A B C D Hướng dẫn giải: Với phương trình trước tiên sử dụng phương pháp đưa số Lời giải: Điều kiện: Phương trình tương đương skkn Ta có hàm số đồng biến; trình có nghiệm Mà hàm số nghịch biến nên phương suy nghiệm Chọn B Dạng 3: Giải phương trình: với hàm số đơn điệu * Để giải toán ta tiến hành sau: Bước 1: Tìm tập xác định phương trình đưa phương trình dạng Bước 2: Xét hàm số Chỉ rõ hàm số đơn điệu Bước 3: Khi đó: Bước 4: Giải dạng tốn đơn giản kết luận.[2] - Chú ý: + Để giải phương trình dạng học sinh phải nhận biết mối quan hệ hai vế phương trình * Một số ví dụ áp dụng: Ví dụ 1: Có cặp số nguyên thỏa mãn A B C Hướng dẫn giải: Với phương trình dễ dàng xét hàm đặc trưng Lời giải: Ta có: D Xét hàm số Do Vì Mà Vậy có nên cặp số nguyên thỏa mãn yêu cầu toán Chọn D Ví dụ 2: Có cặp số ngun dương với thỏa mãn A B Vô số C D Hướng dẫn giải: Với phương trình phải tách hai ẩn sang hai vế xét hàm đặc trưng Lời giải: Do nguyên dương nên, ta có: skkn Xét hàm số Ta có đồng biến Mà Vậy có cặp số ngun dương Chọn C Ví dụ 3: Phương trình có nghiệm ngun? A B C D Hướng dẫn giải: Với phương trình phải khéo léo để biến đổi hàm đặc trưng thích hợp Hàm phải ln đơn điệu Sai lầm thường gặp biến đổi xét hàm hàm số không đơn điệu Lời giải: Điều kiện: Phương trình cho tương đương Xét hàm Có trên ta 10 skkn Chọn C Dạng 4: Giải bất phương trình: với hàm số đơn điệu * Để giải toán ta tiến hành sau: Bước 1: Tìm tập xác định đưa bất phương trình dạng Bước 2: Xét hàm số Chỉ rõ hàm số đơn điệu Bước 3: Khi đó: Nếu hàm đồng biến Nếu hàm nghịch biến Bước 4: Giải dạng toán đơn giản kết luận.[2] - Chú ý: + Để giải bất phương trình dạng học sinh phải nhận biết mối quan hệ hai vế bất phương trình * Một số ví dụ áp dụng: Ví dụ 1: Có cặp số ngun dương thỏa mãn điều kiện ? A B C D Hướng dẫn giải: Với bất phương trình chuyển ẩn vế để tìm hàm đặc trưng Lời giải: Ta có Xét hàm số có Suy hàm số đồng biến Do Vì nên Với giả thiết Với có Với nguyên dương suy suy có có Vậy có tất suy có cặp số cặp số thỏa mãn cặp số thỏa mãn thỏa mãn đề Chọn D Ví dụ 2: Có cặp số ngun thỏa mãn bất phương trình A Hướng dẫn giải: B C D 11 skkn Với bất phương trình đơn giản yêu cầu học sinh đặt ẩn phụ Lời giải: Ta có: Đặt Vì Xét hàm số đưa về: có Suy Suy Với giả thiết số nguyên nên trường hợp sau: xảy Nhận Loại Loại Loại Nhận Nhận Loại Loại Loại Vậy có tất cặp số nguyên thỏa mãn Chọn A Dạng 5: Tìm điều kiện để phương trình kiện cho trước * Để giải toán ta tiến hành sau: Bước 1: Tìm tập xác định phương trình Bước 2: Đưa phương trình dạng Bước 3: Xét hàm số Bước 4: Giải dạng toán đơn giản kết luận.[2] * Một số ví dụ áp dụng: Ví dụ 1: Có giá trị ngun thuộc đoạn A Hướng dẫn giải: B có nghiệm thỏa mãn điều có nghiệm thuộc khoảng C D để phương trình ? 12 skkn Với phương trình phải chia cho biểu thức thích hợp để đưa phương trình bậc hai, đặt ẩn phụ lập Lời giải: Phương trình cho tương đương với Đặt nên Phương trình trở thành Xét hàm Từ bảng biến thiên suy phương trình có nghiệm Kết hợp với giả thiết ta có Có giá trị Chọn D Ví dụ 2: Tập tất giá trị tham số có nghiệm có dạng để phương trình Tổng A B C D Hướng dẫn giải: Với phương trình nên đặt ẩn phụ để đưa phương trình đơn giản Lời giải: Đặt Phương trình trở thành Xét hàm Ta có Để phương trình cho có nghiệm phương trình có nghiệm dương Chọn C Dạng 6: Tìm điều kiện để bất phương trình nghiệm thỏa mãn điều kiện cho trước có 13 skkn * Để giải toán ta tiến hành sau: Bước 1: Tìm tập xác định bất phương trình Bước 2: Đưa bất phương trình dạng Bước 3: Xét hàm số Bước 4: Giải dạng toán đơn giản kết luận.[2] * Một số ví dụ áp dụng: Ví dụ 1: Tìm tất giá trị thực tham số để bất phương trình nghiệm với A B C D Hướng dẫn giải: Với bất phương trình nên đặt ẩn phụ để đưa bất phương trình đơn giản Lời giải: Đặt Vì Yêu cầu tốn trở thành: Tìm tất giá trị thực tham số để bất phương trình , nghiệm với Xét hàm số với Có Bảng biến thiên Dựa vào bảng biến thiên ta có: Ví dụ 2: Tìm tất giá trị Chọn A để bất phương trình nghiệm với A B C D Lời giải: 14 skkn Đặt Ta có Xét hàm số , , Ta có , Vậy bất phương trình nghiệm với Chọn D Dạng 7: Tìm điều kiện để phương trình có nghiệm thỏa mãn điều kiện cho trước * Để giải tốn ta tiến hành sau: Bước 1: Tìm tập xác định phương trình Bước 2: Đưa phương trình dạng Bước 3: Xét hàm số Bước 4: Giải dạng toán đơn giản kết luận.[2] * Một số ví dụ áp dụng: Ví dụ 1: Có số ngun để phương trình có hai nghiệm thực phân biệt ? A B C D Lời giải: Điều kiện: 15 skkn Xét , hàm số đồng biến Khi Xét hàm số Phương trình có nghiệm thực dương giá trị nguyên thỏa mãn yêu cầu toán Chọn B Ví dụ 2: Cho phương trình với giá trị nguyên A Lời giải: Điều kiện: Phương trình tương đương Xét hàm số đồng biến Từ B suy khơng có tham số Có để phương trình cho có hai nghiệm thực? C D ; Ta có: Hàm số suy Xét hàm số Ta có: ; Bảng biến thiên: 16 skkn Do đó: Phương trình cho có Vì nghiệm nên Vậy có giá trị Chọn D Hiệu sáng kiến kinh nghiệm - Qua nhiều năm giảng dạy trường THPT Thọ Xuân ôn thi tốt nghiệp THPT ôn thi HSG, sử dụng theo cách nêu để dạy cho học sinh - Kết nhận thấy số lượng học sinh giỏi hứng thú với phương pháp giải toán tập dạng em giải thành thạo Các năm gần thi tốt nghiệp THPT HSG lớp 12 xem dạng toán cần có đề thi Tơi thấy học sinh làm tốt dạng tốn mà khơng cịn vướng mắc Từ làm chủ kiến thức, đạt kết cao trình học tập thi tốt nghiệp THPT thi HSG cấp tỉnh - Tôi tiến hành thực nghiệm sư phạm hai lớp có trình độ tương đương nhau, lớp 12A1 lớp thực nghiệm dạy học theo phương pháp mới, lớp 12A2 lớp đối chứng dạy theo phương pháp truyền thống Sau dạy thực nghiệm, cho học sinh làm kiểm tra sau: Đề bài: Câu Tích nghiệm phương trình A B C Câu Có cặp số nguyên dương D với thỏa mãn A Câu Cho B C D số thực thỏa mãn bất phương trình: Biết , số cặp nguyên thỏa mãn bất phương trình A B C D Câu Cho phương trình Tìm tất giá trị tham số để bất phương trình nghiệm với thuộc 17 skkn A B Câu Cho bất phương trình tham số Tìm tất giá trị tham số với A B C D , với để bất phương trình cho nghiệm C D Câu Phương trình có ba nghiệm phân biệt A B Câu Có cặp số nguyên Giá trị biểu thức C D thỏa mãn A B C D Câu Có cặp số nguyên dương thỏa mãn A B C D Câu Có giá trị nguyên dương nhỏ để phương trình có nghiệm thực dương? A B C Câu 10 Có giá trị nguyên âm tham số A B Số liệu thống kê kết thể hiện: Lớp n TN ĐC 40 40 0 0 D để phương trình có nghiệm thực? D C Điểm số Xi 14 10 12 16 10 Bảng phân bố tần số kiểm tra xi TN (%) ĐC (%) 0.00 0.00 0.00 0.00 7.50 0.00 0.00 40.00 25.00 30.00 22.50 35.00 17.50 12.50 5.00 0.00 0.00 0.00 10 5.00 0.00 Bảng phân bố tần suất 18 skkn Từ bảng số liệu phân tích điểm số qua kiểm tra cho thấy: Lớp TN: - Điểm giỏi có tỷ lệ 35,00% - Tỷ lệ HS chiếm 35,00% - HS trung bình 30,00%, khơng có yếu Lớp ĐC: - Tỷ lệ HS đạt điểm giỏi 00,00% - Tỷ lệ HS đạt điểm 00,00% - Tỷ lệ HS đạt điểm trung bình 35,00% - Tỷ lệ HS đạt điểm yếu 65,00% Thông qua tỷ lệ chứng tỏ kết học tập HS lớp TN tốt lớp ĐC 19 skkn PHẦN KẾT LUẬN, KIẾN NGHỊ Kết luận Trên giải pháp mà đúc rút suốt trình giảng dạy trường THPT Thọ Xuân Phương trình, bất phương trình mũ lơgarit nội dung quan trọng chương trình mơn tốn THPT nói chung Nhưng học sinh ơn thi tốt nghiệp THPT, ôn thi HSG lại mảng tương đối khó, phần nhiều thầy giáo quan tâm Đề tài kiểm nghiệm năm học gần đây, học sinh đồng tình đạt kết quả, nâng cao khả giải phương trình, bất phương trình Các em hứng thú học tập hơn, lớp có hướng dẫn kỹ em học sinh có học lực trở lên có kỹ giải tập Học sinh biết áp dụng tăng rõ rệt Giải toán “Ứng dụng tính chất đơn điệu hàm số” phương pháp hay, độc đáo, sử dụng lâu, không phổ biến bậc THPT Qua trình tham khảo, học hỏi bậc thầy trước, sử dụng phương pháp để dạy cho học sinh nhận thấy có hiệu cao học sinh Tôi xin phép mạnh dạn đưa ý tưởng để bạn đồng nghiệp em học sinh tham khảo Sáng kiến kinh nghiệm giới thiệu phần nhỏ ứng dụng phương pháp hàm số để giải toán Mong đồng nghiệp phát triển thêm để tính đầy đủ chuyên đề cao Rất mong đóng góp ý kiến đồng nghiệp em học sinh Kiến nghị đề xuất Đề nghị Ban chuyên môn nhà trường tạo điều kiện giúp đỡ học sinh giáo viên có nhiều tài liệu sách tham khảo đổi phòng thư viện để nghiên cứu học tập nâng cao kiến thức chuyên môn nghiệp vụ Nhà trường cần tổ chức buổi trao đổi phương pháp giảng dạy Có tủ sách lưu lại tài liệu chuyên đề bồi dưỡng ôn tập giáo viên hàng năm để làm cở sở nghiên cứu phát triển chuyên đề XÁC NHẬN CỦA THỦ TRƯỞNG ĐƠN VỊ Thanh hóa, ngày 30 tháng 05 năm 2022 Tôi xin cam đoan SKKN viết, khơng chép nội dung người khác Trương Văn Hòa 20 skkn TÀI LIỆU THAM KHẢO Nguyễn Bá Kim (2002), Phương pháp dạy học mơn Tốn, NXB Đại học sư phạm Hà Nội Thư viện: violet.vn › Toán, internet Sách giáo khoa Giải tích 12 – bản, nâng cao (NXB Giáo dục) 21 skkn DANH MỤC SÁNG KIẾN KINH NGHIỆM ĐÃ ĐƯỢC HỘI ĐỒNG SÁNG KIẾN KINH NGHIỆM NGÀNH GIÁO DỤC VÀ ĐÀO TẠO HUYỆN, TỈNH VÀ CÁC CẤP CAO HƠN XẾP LOẠI TỪ C TRỞ LÊN Họ tên tác giả: Trương Văn Hịa Chức vụ đơn vị cơng tác: Tổ phó chun mơn trường THPT Thọ Xn Kết Năm học Cấp đánh giá đánh TT Tên đề tài SKKN đánh giá xếp loại giá xếp xếp loại loại Tạo hứng thú học tập mơn Tốn cho học sinh thông qua giải tập sách giáo khoa Sở GD ĐT Tỉnh Thanh Hóa C 2008 - 2009 Tạo hứng thú học tập môn Tốn cho học sinh thơng qua giải bìa tập sách giáo khoa Đại số 10 nâng cao Sở GD ĐT Tỉnh Thanh Hóa C 2009 - 2010 Tạo hứng thú học tập mơn Tốn cho học sinh thơng qua giải bìa tập sách giáo khoa Sở GD ĐT Tỉnh Thanh Hóa C 2010 - 2011 Hướng dẫn học sinh sử dụng đạo hàm vào giải số dạng tập lượng giác tam giác Sở GD ĐT Tỉnh Thanh Hóa C 2011 - 2012 Giúp học sinh lớp 10 giải phương trình vơ tỉ phương pháp đặt ẩn phụ Sở GD ĐT Tỉnh Thanh Hóa C 2015 - 2016 Hướng dẫn học sinh sử dụng tích phân vào giải số toán thực tế chương trình Tốn lớp 12 Sở GD ĐT Tỉnh Thanh Hóa C 2019 - 2020 22 skkn Giúp học sinh lớp 10 giải phương trình vơ tỉ phương pháp đặt ẩn phụ Sở GD ĐT Tỉnh Thanh Hóa C 2015 - 2016 23 skkn ... trình mũ lơgarit phương pháp sử dụng tính đơn điệu hàm số tơi mạnh dạn đề xuất sáng kiến: ‘? ?Rèn luyện kỹ giải phương trình, bất phương mũ lơgarit phương pháp sử dụng tính đơn điệu hàm số cho học sinh. .. học cho học sinh - Rèn luyện cho học sinh kỹ giải tập phương pháp hàm số - Trang bị cho học sinh kiến thức vững vàng, chuẩn bị bước vào kỳ thi HSG cấp tỉnh lớp 12 thi tốt nghiệp THPT skkn - Học. .. lớp 12 việc học tập, làm tập dạng phương trình, bất phương trình có sử dụng phương pháp hàm số Tơi nhận thấy học sinh thường bỏ qua khơng có hướng giải Học sinh hoang mang gặp phương trình, bất

Ngày đăng: 02/02/2023, 08:57

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w