UBND TỈNH TUYÊN QUANG UBND TỈNH TUYÊN QUANG SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ thi GIẢI TOÁN TRÊN MÁY TÍNH CẦM TAY CẤP TỈNH NĂM häc 2008 2009 M«n to¸n thcs Thêi gian lµm bµi 150 phót (Kh«ng kÓ thêi gian giao ®[.]
UBND TỈNH TUN QUANG KÌ thi GIẢI TỐN TRÊN MÁY TÍNH CẦM TAY CẤP TỈNH SỞ GIÁO DỤC VÀ ĐÀO TẠO NĂM häc 2008 - 2009 ĐỀ CHÍNH THỨC gian giao đề) Môn: toán thcs Thời gian làm bài: 150 phút (Không kể thời (Đề có 04 trang) im thi Bằng số Bằng chữ Họ tên giám khảo Giám khảo Giám khảo Số phách (Do chủ tịch hội đồng chấm thi ghi) Quy ước: - Thí sinh làm trực tiếp vào đề thi này; - Các tốn có u cầu trình bày lời giải trình bày tóm tắt cách giải cơng thức áp dụng (khơng viết tràn ngồi ô quy định); - Các kết gần lấy đến chữ số thập phân sau dấu phẩy Câu (5 điểm) Tính giá trị biểu thức: a) A = sin2100 + (cos10” + tan310010’)2 - cot420010” b) B = với x = 2, y = 3, z = Kết a) A b) B Câu (5 điểm) Tìm các số thực x thỏa mãn: Cách giải Kết quả: x Câu (5 điểm) Cho hai đa thức P(x) = 6x3 + mx2 -16x + n và Q(x) = 7x3 – 5x2 + mx + n Tìm m và n để P(x) và Q(x) cùng chia hết cho (x – 100) Kết m n Câu (5 điểm) Cho đa thức P(x) = x + ax4 + bx3 + cx2 + dx + e có P(1) = 2, P(2) = 4, P(3) = 6, P(4) = 8, P(5) = 10 Tìm P(6), P(7), P(8), P(9), P(10) Kết Câu (5 điểm) Một người gửi tiết kiệm vào ngân hàng số tiền gốc ban đầu 200.000.000 đồng với lãi suất 0,55% tháng a) Tính số tiền lãi người có sau năm gửi tiền (làm trịn đến 100 đồng) b) Để mua Ơtơ với giá 250.000.000 đồng người phải gửi tiết kiệm tháng đủ số tiền mua ? Kết a) b) Câu (5 điểm) Cho hai hàm số y = 2x + (1) y = - 3x + (2) a) Tìm tọa độ giao điểm A hai đồ thị hàm số b) Gọi B, C giao điểm đồ thị hàm số (1) đồ thị hàm số (2) với trục hồnh Tính số đo góc tam giác ABC (làm tròn đến đơn vị giây) Kết a) Câu (5 điểm) Tìm chữ số hàng chục 17 b) ; 2009 ; Cách giải Kết quả: Câu (5 điểm) Cho dãy số cho bởi số hạng tổng quát: a) Tính U1, U2, U3, U4, U5 b) Lập công thức truy hồi tính Un+1 theo Un và Un-1 Kết a) b) Câu (5 điểm) Cho tam giác ABC vuông A, AB = cm, BC = cm Tính độ dài đường trung tuyến BM đường cao AH tam giác ABC (MAC, HBC) Cách giải BM AH Câu 10 (5 điểm) Cho tam giác cân MNP, MN = MP Về phía ngồi tam giác MNP vẽ tam giác vng cân MNQ NPR (QM = QN, RP = RN) Tính tỉ số k = (trong S(MNQ), S(NPR) diện tích tam giác MNQ NPR) Cách giải Kết quả: k -Hết Ghi chú: - Giám thị coi thi khơng giải thích thêm - Thí sinh khơng sử dụng tài liệu làm