1. Trang chủ
  2. » Tất cả

Giáo trình Trí tuệ nhân tạo TS. Nguyễn Ngọc Thuần

100 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 100
Dung lượng 715,57 KB

Nội dung

Untitled 1 TRƯỜNG ĐẠI HỌC CÔNG NGHIỆP VINH KHOA CÔNG NGHỆ BỘ MÔN CÔNG NGHỆ THÔNG TIN (LƯU HÀNH NỘI BỘ) TRÍ TUỆ NHÂN TẠO BIỂU DIỄN & TÌM KIẾM TS NGUYỄN NGỌC THUẦN VINH, 2018 2 LỜI TỰA Để có thêm lựa ch[.]

TRƯỜNG ĐẠI HỌC CÔNG NGHIỆP VINH KHOA CÔNG NGHỆ BỘ MƠN CƠNG NGHỆ THƠNG TIN (LƯU HÀNH NỘI BỘ) TRÍ TUỆ NHÂN TẠO BIỂU DIỄN & TÌM KIẾM TS NGUYỄN NGỌC THUẦN VINH, 2018 LỜI TỰA Để có thêm lựa chọn “Tài liệu học tập” cho sinh viên trình học tập, nghiên cứu; chủ động việc giảng dạy cho giáo viên Sau nhiều năm giảng dạy, biên tập lại số vấn đề Mơn học Trí tuệ nhân tạo tinh thần rút gọn để phù hợp với đối tương - sinh viên ngành CNTT, trường Đại học Công nghiệp Vinh – trường Đại học định hướng thực hành vừa đảm bảo phần môn học Với phương châm vừa giới thiệu lý thuyết vừa tăng cường kỹ thực hành, tập giảng tập trung giới thiệu vấn đề liên quan đến biểu diễn tri thức kỹ thuật tìm kiếm Đây giáo trình mơn học Trí tuệ nhân tạo dành cho giáo viên, sinh viên ngành CNTT công tác giảng dạy, nghiên cứu học tập trường Đại học Cơng nghiệp Vinh Giáo trình lựa chọn vấn đề từ tài liệu chuyên ngành từ truyền thống đến đại tổ chức thành 04 chương; Chương 1, giới thiệu khái niệm bản; Nêu vai trị, nhiệm vụ mơn học chương trình đào tạo Đại học đời sống xã hội; Các xu nghiên cứu tương lai gần ứng dụng thực tiễn TTNT Chương 2, tập trung giới thiệu hai bốn cách biểu diễn tri thức, biểu diễn tri thức nhờ Lơgic biểu diễn tri thức sử dụng luật dẫn xuất; Còn biểu diễn tri thức sử dụng mạng ngữ nghĩa khung (Frame) giới thiệu định nghĩa cấu trúc phương pháp Chương 3, mô tả không gian trạng thái với phận cấu thành nhằm phục vụ cho giải pháp tìm kiếm trình bày phần Chương 4, việc đưa giải pháp tìm kiếm truyền thống: Tìm kiếm theo chiều rộng, tìm kiếm theo chiều sâu, giáo trình tập trung giải pháp nâng cao: tìm kiếm với đường cực tiểu, tìm kiếm với giá thành tối ưu – Phương pháp tìm kiếm tốt (BFS); tìm kiếm leo đồi với hàm đánh giá chọn Cuối phần, có ví dụ, tập minh họa kiểm tra nhận thức sinh viên Cùng với tập giảng, cung cấp tập tốn thực tiễn, giúp người học có thêm hội rèn luyện, kiểm tra khả lập trình ngơn ngữ lập trình bậc cao Chủ biên TS Nguyễn Ngọc Thuần MỤC LỤC Chương Chương Nội dung Tổng quan Trí tuệ nhân tạo 1.1 Các khái niệm 1.2 Đối tượng mục tiêu nghiên cứu 1.3 Vai trò TTNT 1.4 Các kỹ thuật TTNT 1.5 Những vấn đề đặt tương lai cảu TTNT 1.6 Câu hỏi Bài tập Phương pháp biểu diễn tri thức giải thuật 2.1 Biểu diễn tri thức nhờ Lơgic hình thức 2.1.1 Lơ gic mệnh đề 2.1.2 Các luật đại số 2.1.3 Một số thuật giải chứng minh Thuật toán Vương Hạo Thuật tốn Robinson Các ví dụ 2.1.4 Bài tập 2.1.5 Lơgic vị từ Các Định nghĩa khái niệm 2.1.5.1 Cú pháp, ngữ nghĩa 2.1.5.2 Chuẩn hóa cơng thức 2.1.5.3 Ví dụ Bài tập 2.2 Biểu diễn tri thức sử dụng luật dẫn xuất 2.2.1 Các khái niệm 2.2.2 Cấu trúc 2.2.3 Suy diễn luật sản xuất 2.2.3.1 Khái niệm 2.2.3.2 Các phương pháp suy diễn Phương pháp suy diễn tiến Phương pháp suy diễn lùi 2.2.4 Ví dụ Bài tập 2.3 Chương Biểu diễn tri thức sử dụng mạng ngữ nghĩa, khung (Frame) Biểu diễn tốn khơng gian trạng thái 3.1 Các khái niệm 3.2 Mơ tả trạng thái 3.3 Tốn tử chuyển trạng thái 3.4 Khơng gian trạng thái tốn 3.5 Biểu diễn không gian trạng thái dạng Graf Trang 1-5 2 – 49 - 36 – 21 10 – 11 11 – 21 12 – 14 14 – 15 15 – 19 19 – 21 21 – 36 21 – 23 24 – 29 29 - 33 33 – 36 37 – 48 37 37 39 – 43 39 39 39 – 41 41 – 43 44 – 48 49 50 – 61 50 – 51 52 – 53 54 – 56 57 58 – 59 Chương 3.6 Ví dụ Bài tập Các phương pháp tìm kiếm lời giải khơng gian trạng thái Mơ tả tốn 4.1 Phương pháp tìm kiếm theo chiều rộng 4.2 Phương pháp tìm kiếm theo chiều sâu 4.3 Phương pháp tìm kiếm tốt (Thuật toán BFS – Best First Search) 4.4 Tìm kiếm đường có giá thành cực tiểu (Thuật toán ATK – Algorithm for Knowlegeable Tree Search) 4.5 Tìm kiếm cực tiểu dùng hàm đánh giá (Thuật tốn A*) 4.6 Phương pháp tìm kiếm leo đồi (Hill-climbing search) TRÍ TUỆ NHÂN TẠO TS Nguyễn Ngọc Thuần Chương TỔNG QUAN VỀ TRÍ TUỆ NHÂN TẠO (TTNT) 1.1 Các khái niệm 60 – 61 62 – 90 62 – 63 63 – 69 69 – 74 74 – 79 80 – 84 84 – 87 87 - 90 Trí tuệ nhân tạo (AI: Artificial Intelligence) ngành khoa học máy tính liên quan đến việc tự động hóa hành vi thơng minh Trí tuệ nhân tạo (tương lai nhân loại) khơng có khác mơ hoạt động não người - mạng nơ ron (Neural network) AI xây dựng nguyên lý lý thuyết vững chắc, có khả ứng dụng Những nguyên lý bao gồm: Các cấu trúc liệu dùng cho biểu diễn tri thức; Các thuật toán cần thiết để xử lý áp dụng tri thức đó; Các ngơn ngữ kỹ thuật lập trình dùng cho việc cài đặt chúng + Khái niệm: TTNT - AI: Artificial Intelligence; (Trí tuệ, Tri thức - knowledge) CSTT (Cơ sở tri thức)-Tập hợp tri thức + Vai trò, Chức AI: Tìm kiếm, tập hợp liệu (mà người gọi tri thức, kiến thức); Tìm kiếm CTDL thích hợp để biểu diễn tri thức MT; Tìm kiếm Luật suy diễn phù hợp để từ CSTT - tập hợp tri thức biểu diễn dạng đó, suy hành động + Các phận cấu thành Hệ TT: CSTT + Bộ suy diễn Bộ suy diễn thành phần khác hệ tri thức Như hệ tri thức bảo trì CSTT trang bị thủ tục suy diễn + Bài toán TTNT gồm dạng: - Cách biễu diễn tri thức đánh giá; - Các thuật toán xử lý TT yếu tố vượt trội - Học máy (Machine Learning - khác với việc máy công cụ lưu trữ): Đưa liệu vào máy; Hệ thống thuật toán xử lý; Đưa kết - kiến thức thu/học Qúa trình lặp lại thu kết mong đợi + Mục tiêu biểu diễn tri thức: Để máy tính sử dụng tri thức, xử lý tri thức, cần biểu diễn tri thức dạng thuận tiện cho máy tính Trong Cơng Nghệ Thơng Tin, Trí Tuệ Nhân Tạo (Artificial Intelligence) ngành mới, phát triển mạnh mẽ đem lại nhiều kết to lớn Việc đời máy tính điện tử vào năm 50 kỷ 20 đưa việc nghiên cứu trí tuệ nhân tạo (về vấn đề lý thuyết thực nghiệm) vào máy tính lĩnh vực nghiên cứu lý thuyết ứng dụng thực tiễn 1.2 Đối tượng mục tiêu nghiên cứu trí tuệ nhân tạo Hai mối quan tâm tảng nhà nghiên cứu TTNT là: Biểu diễn tri thức (knowledge representation) tìm kiếm(search) Biểu diễn tức Sử dụng cơng cụ: ngơn ngữ hình thức, lô gic mệnh đề, lô gic vị từ, Luật suy diễn, Khung,… tùy theo toán cụ thể (một cách phù hợp) chuyển tốn thực tiễn (theo ngơn ngữ tự nhiên) dạng mơ hình tốn học Tìm kiếm hiểu theo nghĩa: Sử dụng kết hợp kỹ thuật biết để tìm phương án (lời giải) không gian trạng thái tốn (problem state) Trí tuệ nhân tạo nghiên cứu cách hành xử/hành vi thông minh (intelligent behaviour) với mục tiêu xây dựng đầy đủ lý thuyết thông minh để giải thích hoạt động thông minh sinh vật áp dụng hiểu biết vào cơng cụ/máy móc nói chung, nhằm phục vụ cho người 1.3 Vai trò Trí Tuệ Nhân Tạo Trí tuệ nhân tạo nghiên cứu lĩnh vực tổng quát máy nhận biết, suy luận logic, đến toán chơi cờ, chứng minh định lý,các kỹ thuật hệ thống hoá tự động hoá xử lý tri thức phương pháp thuộc lĩnh vực mang tính người Trí tuệ nhân tạo nghiên cứu kỹ thuật làm cho máy tính “suy nghĩ cách thơng minh” mơ trình suy nghĩ người đưa định, lời giải Trên sở đó, thiết kế chương trình cho máy tính để giải toán Sự đời phát triển Trí tuệ nhân tạo tạo bước nhảy vọt chất kỹ thuật kỹ nghệ xử lý thông tin Điều thể qua mặt sau: - Nhờ cơng cụ hình thức hố: Các mô hinh logic ngôn ngữ, logic mờ, , tri thức thủ tục tri thức mơ tả biểu diễn máy Do trình giải toán tiến hành hữu hiệu - Logic ngôn ngữ mở rộng khả ứng dụng máy tính lĩnh vực địi hỏi tri thức trình độ cao, khó như: y học, sinh học, địa lý, tự động hóa - Đã có nhiều phần mềm TTNT thể tính thích nghi tính mềm dẻo lớp toán thuộc nhiều lĩnh vực khác nhau: Y học, Dự báo, Thiết kế, Xây dựng, Thương mại, 1.4 Các kỹ thuật Trí tuệ nhân tạo Có nhiều kỹ thuật nghiên cứu, phát triển Trí tuệ nhân tạo Tuy vậy, kỹ thuật Trí tuệ nhân tạo thường phức tạp thực cài đặt cụ thể, liên quan đến xử lý ký hiệu Các kỹ thuật Trí tuệ nhân tạo bao gồm : - Lý thuyết giải tốn suy diễn thơng minh: Viết chương trình giải câu đố, trị chơi thơng qua suy luận mang tính người; hệ thống chứng minh định lý - Lý thuyết thể tri thức hệ chuyên gia: Trí tuệ nhân tạo khoa học thể sử dụng tri thức - Mạng ngữ nghĩa, lược đồ, logic vị từ, khung phương pháp thể tri thức thông dụng Việc gắn liền cách thể sử dụng tri thức sở hình thành hệ chuyên gia - Lý thuyết nhận dạng xử lý tiếng nói: Các phương pháp nhận dạng gồm: nhận dạng hình học, nhận dạng dùng tâm lý học, nhận dạng theo phương pháp hàm thế, dùng máy nhận dạng, nhận dạng chữ viết, âm - Người máy: Cuối năm 70, người máy công nghiệp đạt nhiều tiến Người máy có phận cảm nhận chế hoạt động nối ghép theo điều khiển thông minh - Tâm lý học xử lý thông tin.Xử lý danh sách, kỹ thuật đệ quy, kỹ thuật quay lui xử lý cú pháp hình thức, kỹ thuật tin học truyền thống có liên quan trực tiếp đến Trí tuệ nhân tạo 1.5 Các khái niệm trí tuệ: Trí tuệ người (Human Intelligence): Có hai khái niệm trí tuệ người chấp nhận sử dụng nhiều nhất, là: • Khái niệm trí tuệ theo quan điểm Turing “Trí tuệ đánh giá thông qua trắc nghiệm thông minh” • Khái niệm trí tuệ đưa từ điển bách khoa tồn thư: “Trí tuệ khả phản ứng cách thích hợp tình thơng qua hiệu chỉnh hành vi cách thích đáng.Hiểu rõ mối liên hệ qua lại kiện giới bên nhằm đưa hành động phù hợp đạt tới mục đích Theo tâm lý học, q trình hoạt động trí tuệ người bao gồm thao tác bản: 1- Xác định tập đích (goals) 2- Thu thập kiện (facts) luật suy diễn (inference rules) để đạt đích đặt 3- Thu gọn (pruning) trình suy luận nhằm xác định tập suy diễn sử dụng 4- Áp dụng chế suy diễn cụ thể (inference mechanisms) để đưa kiện ban đầu đến đích Trí tuệ máy: Khơng có định nghĩa tổng qt, nêu đặc trưng chính: 1- Khả học 2- Khả mô hành vi người 3- Khả trừu tượng hoá, tổng quát hoá suy diễn 4- Khả tự giải thích hành vi 5- Khả thích nghi tình kể thu nạp tri thức liệu 6- Khả xử lý biểu diễn hình thức ký hiệu tượng trưng 7- Khả sử dụng tri thức heuristic 8- Khả xử lý thơng tin khơng đầy đủ, khơng xác 1.6 Những vấn đề đặt tương lai chuyên ngành Trí tuệ nhân tạo Trong tương lai, nghiên cứu ứng dụng TTNT tập trung vào vấn đề lớn sau: + Nghiên cứu ứng dụng mạng Neuron;Các hệ thống Trí tuệ nhân tạo mô chức hoạt động não với khả học, tự tổ chức, tự thích nghi, tổng qt hố, xử lý song song, có khả diễn giải, xử lý thông tin liên tục rời rạc + Nghiên cứu tạo lập hệ thống có giao tiếp thân thiện người máy sở nghiên cứu nhận thức máy, thu thập xử lý tri thức, xử lý thơng tin hình ảnh, tiếng nói + Nghiên cứu phương pháp biểu diễn tri thức phương pháp suy diễn thông minh, phương pháp giải vấn đề tốn phụ thuộc khơng gian, thời gian Các chuyên ngành: Các phương pháp tìm kiếm lời giải Hệ chuyên gia Lý thuyết nhận dạng Các mơ hình thần kinh Người máy 1.7 Câu hỏi, Bài tập 1.Nêu khái quát riêng bạn Trí tuệ nhân tạo Trí tuệ người máy? Hãy so sánh điểm khác khả giải vấn đề máy tính đại với người Hãy cho biết số ứng dụng TTNT sống xã hội mà bạn biết Chương PHƯƠNG PHÁP BIỄU DIỄN TRI THỨC VÀ CÁC GIẢI THUẬT Như ta biết, khơng thể có phương pháp giải vấn đề tổng qt cho tốn Có thể phương pháp phù hợp cho toán này, lại khơng phù hợp cho lớp tốn khác Điều có nghĩa nói tới tốn, ta phải ý đến phương pháp biểu diễn phương pháp tìm kiếm lời giải khơng gian toán nhận Đầu tiên, quan tâm đến vấn đề biểu diễn Biểu diễn tốn nhờ khơng gian trạng thái (Sau đó, nói đến chiến lược tìm kiếm đồ thị biểu diễn vấn đề) Biểu diễn toán nhờ Quy toán (Phân rã toán) Biểu diễn vấn đề nhờ logic hình thức (có phương pháp suy diễn logic) Để máy tính sử dụng tri thức, xử lý tri thức, cần phải biểu diễn tri thức dạng thuận tiện cho máy tính (để máy tính hiểu được) 10 ... search) TRÍ TUỆ NHÂN TẠO TS Nguyễn Ngọc Thuần Chương TỔNG QUAN VỀ TRÍ TUỆ NHÂN TẠO (TTNT) 1.1 Các khái niệm 60 – 61 62 – 90 62 – 63 63 – 69 69 – 74 74 – 79 80 – 84 84 – 87 87 - 90 Trí tuệ nhân tạo. .. thuật Trí tuệ nhân tạo Có nhiều kỹ thuật nghiên cứu, phát triển Trí tuệ nhân tạo Tuy vậy, kỹ thuật Trí tuệ nhân tạo thường phức tạp thực cài đặt cụ thể, liên quan đến xử lý ký hiệu Các kỹ thuật Trí. .. đến Trí tuệ nhân tạo 1.5 Các khái niệm trí tuệ: Trí tuệ người (Human Intelligence): Có hai khái niệm trí tuệ người chấp nhận sử dụng nhiều nhất, là: • Khái niệm trí tuệ theo quan điểm Turing “Trí

Ngày đăng: 17/01/2023, 18:00

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN