1. Trang chủ
  2. » Tất cả

Giáo trình kinh tế lượng

112 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 112
Dung lượng 1,43 MB

Nội dung

BỘ CÔNG THƯƠNG TRƯỜNG ĐẠI HỌC CÔNG NGHIỆP QUẢNG NINH GIÁO TRÌNH KINH TẾ LƯỢNG DÙNG CHO BẬC ĐẠI HỌC (LƯU HÀNH NỘI BỘ) QUẢNG NINH - 2020 KINH TẾ LƯỢNG Tên học phần: Kinh Tế Lượng (Econometrics) Mơ tả vắn tắt nội dung học phần: Mục đích Kinh Tế Lượng giúp học viên nắm rõ vận dụng mơ hình hồi qui để ước lượng, dự đốn giá trị trung bình tổng thể biến phụ thuộc theo giá trị biến giải thích nhằm xác định mức độ quan hệ biến, từ thấy chất tượng tìm biện pháp khắc phục Mơn học cịn nhằm trang bị cho học viên cách thức vận dụng cơng cụ phân tích định lượng vào việc xử lý phân tích vấn đề kinh tế cụ thể Nhiệm vụ học viên: Dự giảng lớp đọc giáo trình, làm tập theo nhóm xử lý liệu phần mềm mơn học trang bị, tham dự thảo luận hướng dẫn giảng viên Tham dự kiểm tra hết môn học theo lịch nhà trường qui định Tài liệu tham khảo thêm: − Basic Econometrics, tác giả Damodar N Gujarati, 1995 − Introductory Econometrics, tác giả Craig A Depken, 2006 − Econometric Analysis, tác giả William H Greene, 2000 Tiêu chuẩn đánh giá: − Dự đủ lớp theo u cầu mơn học − Hồn thành đạt yêu cầu tập môn học trước thi hết môn − Thi hết môn Mục tiêu học phần: Nắm vững mơ hình kinh tế lượng để lượng hố quan hệ kinh tế vĩ mô vi mô trang bị trước Liên kết mơ hình kinh tế lượng với lý thuyết kinh tế vĩ mô vi mô liệu thực tế Đề xuất sách dự báo dựa việc phân tích, kiểm định mối quan hệ kinh tế vi mô vĩ mơ qua kết mơ hình ứng dụng số liệu thực tế Nội dung học phần: − Chương I: Cơ Kinh tế lượng phân tích hồi qui − Chương II: Mơ hình hồi qui hai biến, ước lượng kiểm định − Chương III: Mơ hình hồi qui đa biến − Chương IV: Đa cộng tuyến − Chương V: Hồi qui với biến giả − Chương VI: Phương sai sai số thay đổi − Chương VII: Tương quan chuỗi CHƯƠNG I CƠ BẢN VỀ KINH TẾ LƯỢNG VÀ PHÂN TÍCH HỒI QUI 1.1 Vài nét kinh tế lượng: 1.1.1 Giới thiệu kinh tế lượng Thuật ngữ tiếng Anh Econometrics, ghép từ từ “Econo” có nghĩa kinh tế “Metrics” có nghĩa đo lường- Vậy “đo lường kinh tế” Theo nghĩa đơn giản, kinh tế lượng, liên quan đến việc áp dụng phương pháp thống kê kinh tế Khơng thống kê kinh tế, liệu thống kê yếu, kinh tế lượng phân biệt hợp lý thuyết kinh tế, cơng cụ tốn học phương pháp luận thống kê Mở rộng hơn, kinh tế lượng quan tâm đến (1) ước lượng mối quan hệ kinh tế, (2) đối chiếu lý thuyết kinh tế với thực tế kiểm định giả thuyết liên quan đến hành vi kinh tế, (3) dự báo hành vi biến số kinh tế Người ta có để định nghĩa sau: + Kinh tế lượng bao gồm việc áp dụng thống kê toán cho số liệu kinh tế để củng cố mặt thực nghiệm cho mơ hình nhà kinh tế tốn đề xuất để tìm lời giải số + Kinh tế lượng định nghĩa phân tích lượng vấn đề kinh tế thời, dựa việc vận dụng đồng thời lý thuyết thực tế thực phương pháp suy đốn thích hợp Ví dụ ứng dụng kinh tế lượng trong: Ước lượng mối quan hệ kinh tế Kinh tế học thực nghiệm cung cấp nhiều ví dụ nhằm ước lượng mối quan hệ kinh tế như: Ước lượng cầu/cung sản phẩm, dịch vụ Ước lượng ảnh hưởng chi phí bán hàng/quảng cáo đến doanh thu lợi nhuận Giá cổ phiếu với đặc trưng cơng ty phát hành cổ phiếu đó, với tình hình chung kinh tế Đánh giá tác động sách tiền tệ tài đến biến việc làm thất nghiệp, thu nhập, xuất nhập khẩu, lãi suất, tỷ lệ lạm phát, thâm hụt ngân sách Kiểm định giả thuyết Cũng ngành khoa học nào, ưu điểm kinh tế lượng quan tâm đến việc kiểm định giả thuyết hành vi kinh tế Ví dụ như: Một doanh nghiệp muốn xác định xem chiến dịch quảng cáo có tác động làm tăng doanh thu hay khơng Các nhà phân tích quan tâm xem nhu cầu co giãn hay không co giãn theo giá thu nhập Công ty muốn biết lợi nhuận có tăng hay giảm theo qui mơ hoạt động không Các nhà kinh tế học vĩ mơ muốn đánh giá hiệu sách nhà nước Dự báo Khi biến số xác định đánh giá tác động cụ thể chúng đến chủ thể nghiên cứu, muốn sử dụng mối quan hệ ước lượng để dự đoán giá trị tương lai Ví dụ: Các cơng ty dự báo doanh thu, lợi nhuận, chi phí sản xuất, lượng tồn kho cần thiết Dự đốn có nhu cầu lượng nhằm phục vụ việc hoạch định sách có liên quan Dự báo số thị trường chứng khoán giá số cổ phiếu Dự đoán thu nhập, chi tiêu, lạm phát, thất nghiệp, thâm hụt ngân sách thương mại Các thành phố dự báo định kỳ mức tăng trưởng địa phương qua mặt như: dân số; việc làm; số nhà ở, nhu cầu trường học, dịch vụ cơng cộng; …v.v 1.1.2 Mục đích kinh tế lượng Mục đích kinh tế lượng giải thích biến thiên biến mối quan hệ biến, ví dụ: Có biến (chỉ tiêu) thay đổi (do lệch khỏi trung bình) mà cần phải giải thích, ví dụ nghiên cứu lượng bán loại sản phẩm (Q) biến động, tác động đến tiêu tác động lẫn 1.1.3 Phương pháp luận kinh tế lượng Nêu giả thuyết hay giả thiết mối quan hệ biến kinh tế: chẳng hạn kinh tế vĩ mô khẳng định mức tiêu dùng hộ gia đình phụ thuộc theo quan hệ chiều với thu nhập khả dụng họ Thiết lập mơ hình tốn học để mơ tả mối quan hệ biến số Các phương trình mô tả mối quan hệ biến số kinh tế với Một phương trình bao gồm biến phụ thuộc nhiều biến giải thích Sự tác động biến giải thích lên biến phụ thuộc đo lường hệ số hình thức hàm phương trình Một phương trình tiêu biểu sau: Y(t) = f{x1(t), x2 (t), xn(t), u(t)} Y(t) biến phụ thuộc thởi điểm t, biểu trưng cho tiêu cần nghiên cứu hay dự báo (ví dụ GDP, việc làm, lạm phát,…) x1(t), x2 (t), xn(t) biến giải thích thời điểm t, biểu trưng cho nhân tố tác động lên biến phụ thuộc Sự thay đổi hay nhiều biến dẫn tới thay đổi biến phụ thuộc u(t) sai số ngẫu nhiên, biểu trưng cho nhân tố không xác định tác động lên biến phụ thuộc thời điểm t Số hạng sai số u(t), ký hiệu ui (hay cịn gọi số hạng nhiễu ngẫu nhiên) thành phần ngẫu nhiên không quan sát sai biệt Yi phần xác định β1 + β2Xi Sau tổ hợp bốn nguyên nhân ảnh hưởng khác nhau: Biến bỏ sót Giả sử mơ hình thực Yi = β1 + β2Xi + β3Zi+vi đó, Zi biến giải thích khác vi số hạng sai số thực sự, ta sử dụng mơ hình Yi = β1 + β2Xi + ui ui = β3Zi+vi Vì thế, ui bao hàm ảnh hưởng biến Z bị bỏ sót Phi tuyến tính ui bao gồm ảnh hưởng phi tuyến tính mối quan hệ Y X Vì thế, mơ hình thực Yi = β1 + β2Xi + β3X2i+vi, lại giả định phương trình Yi = β1 + β2Xi + ui , ảnh hưởng X2i bao hàm ui Sai số đo lường Sai số việc đo lường X Y thể thông qua u Những ảnh hưởng khơng thể dự báo Dù mơ hình kinh tế lượng tốt chịu ảnh hưởng ngẫu nhiên dự báo Những ảnh hưởng thể qua số hạng sai số ui Việc xây dựng hệ thống phương trình, với biến giải thích lựa chọn thường dựa tảng lý thuyết kinh tế Ví dụ hàm tiêu dùng phải dựa lý thuyết tiêu dùng, hàm đầu tư phải dựa lý thuyết đầu tư,… Điều dẫn đến hệ nhà mơ hình khác xây dựng phương trình với biến giải thích khác nhau, tùy thuộc vào việc áp dụng lý thuyết kinh tế Điều lý giải đa dạng mơ hình kinh tế lượng Ví dụ, Giả sử điều tra tất hộ thành phố tính thu nhập hàng tháng họ (X) tổng chi tiêu vào hàng hóa dịch vụ (Y) Vì hộ gia đình có thu nhập có mức chi tiêu khác (có lẽ khác biệt đặc điểm khác số thành viên gia đình), quan sát cụ thể (Y, X) khơng hồn tồn xác nằm đường thẳng Do vậy, mơ hình hồi qui tuyến tính tương ứng với ví dụ có dạng Y = β1 + β2X + u Trong thực tế, không điều tra tất hộ gia đình mà chọn mẫu ngẫu nhiên từ tổng thể sử dụng quan sát để ước lượng tham số β1 β2 thực kiểm định kiểm tra tính phù hợp giả định mối liên hệ trung bình chi tiêu thu nhập tuyến tính Sau xây dựng xong hệ thống phương trình, phải tập hợp đủ số liệu cho biến tiến hành ước lượng hệ số phương trình Kỹ thuật hồi quy (regression) áp dụng để ước lượng hệ số phương trình Sau ước lượng xong tồn phương trình mơ hình, tiến hành mô (simulation) tác động thay đổi sách tương lai lên biến kinh tế mà quan tâm (ví dụ tăng trưởng, việc làm, lạm phát,…) Trên sở đó, đánh giá tác động chúng hoặc/và đề xuất kịch dự báo Các bước thực Lý thuyết kinh tế tài Nêu giả thuyết Thu thập số liệu Thiết lập mơ hình Ước lượng tham số- phù hợp mơ hình? No Yes Tìm mơ hình khác Dự báo Ra định 1.2 Phân tích hồi qui 1.2.1 Các ví dụ lĩnh vực kinh tế mối quan hệ nhân Trong phân tích hồi qui, cần ước lượng quan hệ toán học biến Những mối quan hệ gọi mối quan hệ hàm số Chúng cố gắng mô tả biến giải thích tác động lên biến phụ thuộc – Biến giải thích biến xảy – Biến phụ thuộc biến kết Ví dụ: Khi cố gắng giải thích chi tiêu dùng người, sử dụng biến giải thích thu nhập độ tuổi Khi giải thích giá tơ, biến giải thích kích cỡ, động máy, độ tin cậy hãng sản xuất độ an tồn tơ Để giải thích giá ngơi nhà biến giải thích kích cỡ, số phịng, tỷ lệ tội phạm khu dân cư độ tuổi ngơi nhà Để dự đốn khả học sinh cuối cấp trung học phổ thông vào đại học, xem xét đến điểm kiểm tra, trình độ giáo dục cha mẹ thu nhập gia đình Vậy phân tích hồi qui nghiên cứu mối liên hệ phụ thuộc biến (gọi biến phụ thuộc hay biến giải thích) với hay nhiều biến khác (được gọi biến độc lập hay giải thích) 1.2.2 Mục đích phân tích hồi qui: Tưởng tượng có thơng tin thu nhập chi tiêu tiêu dùng, tin tưởng chi tiêu tiêu dùng phụ thuộc vào thu nhập biểu diễn biến lên đồ thị Biểu diễn biến phụ thuộc lên trục tung, biến giải thích (biến độc lập) lên trục hồnh Mục đích phân tích hồi quy qua điểm liệu, kẻ đường phù hợp nhất, sát với quan sát để cho biểu diễn mối quan hệ hai biến thu nhập chi tiêu tiêu dùng cách đáng tin cậy 1.2.3 Giới thiệu mơ hình hồi qui tuyến tính đơn giản: Để mơ hình hóa quan hệ tuyến tính diễn tả thay đổi biến Y theo biến X cho trước người ta sử dụng mơ hình hồi qui tuyến tính đơn giản Mơ hình hồi qui tuyến tính đơn giản có dạng sau: Yi = β1 + β2 Xi + ui + Yi : Giá trị biến phụ thuộc Y lần quan sát thứ i + Xi : Giá trị biến độc lập X lần quan sát thứ i + ui : Giá trị dao động ngẫu nhiên (nhiễu ngẫu nhiên) hay sai số lần quan sát thứ i + β1 : thông số diễn tả tung độ gốc (hệ số chặn) đường hồi qui tổng thể, hay β1 giá trị trung bình biến phụ thuộc Y biến độc lập X thay đổi đơn vị + β2 : thông số diễn tả độ dốc (hệ số góc) đường hồi qui tổng thể, hay β2 diễn tả thay đổi giá trị trung bình biến phụ thuộc Y biến độc lập X thay đổi đơn vị Chúng ta ước lượng tham số (β1, β2) phương trình hồi qui tổng thể cách sử dụng số liệu mẫu ngẫu nhiên thu thập Dựa vào số liệu mẫu ta có phương trình hồi qui tuyến tính mẫu yˆi = βˆ1 + βˆ2 X 2i Trong đó: yˆ ước lượng giá trị trung bình Y biến X biết βˆ1 ước lượng β1 βˆ2 ước lượng β2 1.3 Hồi qui tương quan Khi định mơ hình dạng Yi = β1 + β2Xi + ui , ngầm giả định X gây thay đổi Y Việc X Y tương quan chặt với khơng có nghĩa thay đổi X dẫn đến thay đổi Y hay ngược lại Ví dụ, hệ số tương quan số lượng kănguru Úc tổng dân số nước cao Phải điều có nghĩa thay đổi biến làm cho biến thay đổi? Rõ ràng khơng, có trường hợp tương quan giả tạo Nếu hồi quy biến với biến cịn lại, có hồi qui giả tạo Lấy ví dụ khác thực tế hơn, giả sử hồi quy số lượng vụ trộm thành phố với số hạng số số nhân viên cảnh sát (X) sau quan sát thấy hệ số góc ước lượng có giá trị dương, có nghĩa có tương quan thuận X Y Phải điều có nghĩa việc tăng số lượng cảnh sát làm tăng số vụ trộm, ngầm kéo theo phải có sách giảm lực lượng cảnh sát? Rõ ràng kết luận khơng thể chấp nhận Điều xảy mối quan hệ nhân ngược lại, có nghĩa thành phố nên thuê thêm cảnh sát số vụ trộm tăng lên, việc hồi quy X theo Y hợp lý Từ ví dụ ta thấy Hồi qui tương quan khác mục đích kỹ thuật Phân tích tương quan xem xét mức độ kết hợp tuyến tính hai biến, phân tích hồi qui lại ước lượng dự báo biến sở giá trị cho biến khác Về mặt kỹ thuật, phân tích hồi qui biến khơng có tính chất đối xứng, biến phụ thuộc biến ngẫu nhiên, biến giải thích giá trị chúng xác định Trong phân tích tương quan, khơng có phân biệt biến, chúng có tính chất đối xứng 1.4 Các dạng hàm kinh tế lượng Giả sử ta có mơ hình kinh tế tiên đoán mối quan hệ biến phụ thuộc Y biến độc lập X Trong nhiều trường hợp, mơ hình khơng cho biết dạng hàm mà mối quan hệ có liệu, mơ hình thường cho thấy số ý niệm dạng có mối quan hệ Giải pháp thông thường định xem dạng hàm có khả mơ tả tốt liệu nhất, điều phụ thuộc vào suy luận kinh tế phụ thuộc vào việc khảo sát liệu Sau đó, thử xây dựng số dạng hàm khác xem chúng có cho kết tương tự hay không, khơng, phải xem dạng hàm cho kết hợp lý Phần liệt kê số dạng hàm sử dụng phổ biến nhất, cho biết chúng biểu nào, mô tả tính chất chúng, cho số ý tưởng cách chọn lựa dạng hàm 1.4.1 Dạng Hàm Tuyến tính Dạng hàm có phương trình: Y = β + β1 X + ε Dạng hàm tuyến tính mô tả dạng sau: Ưu điểm dạng hàm tuyến tính tính đơn giản Mỗi lần X tăng thêm đơn vị Y tăng thêm β đơn vị, điều giá trị X Y Nhược điểm dạng hàm tuyến tính tính đơn giản nó, lúc tác động X phụ thuộc vào giá trị X Y, dạng hàm tuyến tính khơng thể dạng hàm phù hợp Thí dụ, ta có đường biểu diễn chi phí có dạng C = β + β1Q + ε , dạng hàm tuyến tính ám Q tăng thêm đơn vị chi phí C tăng thêm β đơn vị Điều trường hợp chi phí biên khơng đổi; khơng thể trường hợp chi phí biên tăng dần (hay giảm dần) Nếu nghĩ chi phí biên tăng dần, không muốn sử dụng dạng hàm tuyến tính 1.4.2 Dạng Hàm Bậc hai Dạng hàm cho phép giải thích tác động X lên Y phụ thuộc vào giá trị hành X Nó có phương trình: Y = β + β1 X + β X + ε Dạng hàm bậc hai mơ tả dạng sau: Từ kết kiểm định LM, ta có nR2 = 4.033; p-value = 0.044617

Ngày đăng: 05/01/2023, 13:20

w