1. Trang chủ
  2. » Khoa Học Tự Nhiên

Bài toán Steiner pot

16 207 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 16
Dung lượng 250,89 KB

Nội dung

. Bài toán Steiner 1. Lịch sử bài toán Steiner Vấn đề sau đây được Fermat, nhà toán học Pháp nổi tiếng, đề ra trong cuốn sách “Treatise on Minima and Maximal” [2, trang 1], cụ thể là như sau: “Cho trước ba điểm trong mặt phẳng. Hãy tìm điểm thứ tư sao cho tổng khoảng cách từ điểm này tới ba điểm cho trước nhỏ nhất có thể. “ Bài toán của Fermat được Torricelli, học trò cuối cùng của Galileo, giải vào quãng năm 1640 [2, trang 2]. Điểm này được mang tên là đi ểm Torricelli của tam giác tạo bởi ba điểm đã cho. Đó là điểm nhìn ba cạnh của tam giác tạo bởi 3 điểm đã cho dưới cùng một góc 120° nếu như tam giác tạo thành có ba góc nhỏ hơn 120°, và là đỉnh góc tù nếu như tam giác đó có một góc không nhỏ hơn 120°. Sau nhiều thế kỷ, bài toán của Fermat lại được phát hiện lại trong một khía cạnh mới bởi nhiều nhà toán học khác. Người ta tổng quát bài toán Fermat nh ư sau: Bài toán Fermat : Cho trước một tập hợp hữu hạn n điểm trong mặt phẳng. Hãy tìm một điểm sao cho tổng khoảng cách từ điểm này tới các điểm cho trước nhỏ nhất có thể. Điểm cần tìm được gọi là điểm Torricelli cho hệ n điểm cho trước. Boltyanski, Scriba, Schreiber und Wesolowsky [2, trang 2] đã viết về lịch sử của bài toán Fermat. Vào thế kỷ thứ 19, Steiner đã tổng quát bài toán 1 của Fermat bằng cách không hạn chế số điểm cần tìm. Quãng 100 năm sau, Courant và Robin đã ghi chú về bài toán tổng quát này như sau: “Một vấn đề rất giản đơn nhưng lại rất có tính kiến thiết là vấn đề được nêu ra bởi Jacob Steiner, một đại diện nổi tiếng của trường phái hình học Berlin, vào đầu thế kỷ 19. Ba làng A, B và C phải được nối với nhau bởi một hệ thống đường giao thông vớ i tổng độ dài nhỏ nhất có thể.” Hình 31 Thực ra, ngay từ thời Gauß, người ta đã biết tới những loại bài toán kiểu như thế này. Trong một bức thư gửi cho một người bạn của mình tên là Schumacher, Gauß có viết: 2 “Nếu đề cập tới vấn đề thiết kế một mạng giao thông tối ưu cho các đỉnh một tứ giác, thì ta gặp phải một bài toán thật sự thú vị, mà tôi đã biết tới nó khi phải thiết kế các tuyến đường sắt nối các thành phố Harburg, Bremen, Hannover và Braunschweig “ Trong cuốn sách “What is Mathematics” của Robbins và Courant xuất bản năm 1941, bài toán của Gauß được công bố dưới tên của Steiner: Bài toán Steiner: Cho trước một tập hợ p hữu hạn n điểm trên mặt phẳng (hoặc trong không gian metric nào đó), hãy tìm mạng giao thông với tổng độ dài nhỏ nhất nối các điểm này với nhau. Bài toán của Steiner cho tập hợp gồm 3 điểm cho trước chính là một trường hợp riêng của bài toán Fermat. Thế nhưng, với tập hợp có 4 điểm, ta thấy rằng bài toán Steiner không còn là bài toán của Fermat nữa, và nó hoàn toàn có một màu sắc khác. Tuy vậy, chính Robbins và Courant cũng không hề đề cậ p tới bài toán Fermat trong trường hợp riêng của bài toán Steiner cho n = 3, cũng như không đề cập gì tới bài toán của Gauß khi n = 4. Cũng do sự hấp dẫn và sự phổ cập của cuốn sách của họ, mà bài toán được đặt ra thật sự trở thành “vấn đề Steiner” và mối quan tâm tới bài toán này được thổi bùng lên. Bài toán mà Gauß đặt ra cho hệ thống các đường tàu nối các thành phố Harburg, Bremen, Hannover và Braunschweig được Bopp giải quyết một 3 cách triệt để [2]. Trong hình 31, chúng ta đã thấy mô tả lời giải của bài toán này. Hệ thống đường sắt tối ưu được bổ sung thêm một điểm, điểm Torricelli của tam giác với ba đỉnh là ba thành phố Harburg, Bremen, Hannover, và Braunschweig được nối với Hannover bởi một tuyến đường sắt chạy thẳng. Melzak [2], vào năm 1961, đã là người đầu tiên nêu lên những tính chất cơ sở để xác định mạng giao thông tối ưu cho bài toán Steiner n điểm bất kỳ. Một tổng quan về bài toán Steiner trên mặt phẳng Ơcơlit được đưa ra bởi Gilbert và Pollak trong năm 1968. Vì lý do tối ưu, cho nên chúng ta nhận thấy ngay là mạng tối ưu cho bài toán Steiner chỉ bao gồm các đoạn thẳng nối mà không có đường cong nào cả. Mạng này phải liên thông và không có chu trình (do điều kiện tối ưu của nó, nếu có chu trình ta có bỏ bớt một cạnh trên chu trình mà không ảnh hưởng tới sự liên thông c ủa đồ thị). Như vậy, mạng tối ưu của bài toán Steiner phải là một cây mà cạnh của nó là các đoạn thẳng. Ta gọi mạng tối ưu trong bài toán Steiner là cây Steiner. 2. Phân tích bài toán Steiner cho n = 4 điểm Nghiệm của bài toán Steiner là một hệ thống các đoạn thẳng nối các điểm đã cho với các điểm Steiner ta thêm vào, cho nên chúng ta không thể nêu quy luật tổng quát để xác định chính xác đó là các điểm nào và các đoạn thẳng đó được nối như thế nào. Để đi tới phương pháp tổng quát, ta giải bài toán cho trường hợp n = 4 điểm. Hơn thế nữa, ta chọn 4 điểm đó là 4 đỉnh của một hình vuông cạnh 1 để dễ giải. 4 Bài toán 1: Hãy dụng một mạng lưới giao thông nối 4 đỉnh của một hình vuông ABCD cạnh 1 với tổng độ dài nhỏ nhất, sao cho từ một đỉnh tùy ý của hình vuông, ta có thể đi theo các cạnh tới các đỉnh còn lại của hình vuông. Trong quá trình tìm kiếm mạng tối ưu, ta sẽ sử dụng định lí 11 quen biết sau: Định lí 1. Trên mặt phẳng có một tam giác đều ABC và một điểm M. Khi đó ta có bất đẳng thức MB + MC MA, với đẳng thức chỉ khi M nằm trên cung BC của đường tròn ngoại tiếp tam giác ABC. Định lí 11 trên có thể chứng minh dễ dàng nhờ định lí Prômêtê mở rộng, được phát biểu như sau: Định lí 2. Cho trước 4 điểm ABCD, khi đó ta có bất đẳng thức AB.CD + AD.BC AC.BD, đẳng thức xảy ra chỉ khi ABCD là một tứ giác nội tiếp. Ta thấy rằng mạng tối ưu của chúng ta phải là một cây chứa các đỉnh của hình vuông ABCD đã cho. Bây giờ chúng ta xem xét bài toán theo số các điểm Steiner:  Nếu chỉ có không có điểm Steiner nào cả: 5 Hình 32 Như vậy, cây của chúng ta là cây với bốn đỉnh là đỉnh của hình vuông. Do một cây có 4 đỉnh sẽ có đúng 3 cạnh. Rõ ràng khoảng cách giữa hai đỉnh của hình vuông không nhỏ hơn 1, cho nên cây tối ưu (có tổng độ dài các cạnh nhỏ nhất) là có tổng độ dài các cạnh là 3 (trong hình 32 là một ví dụ với 3 cạnh của hình vuông đơn vị này).  Nếu có đúng một điểm Steiner: Hình 33 Ta thấy rằng do lý do tối ưu, nên bậc của điểm Steiner thêm vào (ta gọi là điểm M) phải ít nhất bằng 3. Nếu không, ta có thể vất bỏ nó đi (nếu nó là đỉnh treo, hoặc thay thế hai cạnh xuất phát từ nó bởi cạnh nối 2 đỉnh láng giềng của nó trong trường hợp bậc của nó 6 bằng 2). Như vậy chỉ có đúng 2 trường hợp phải khảo sát là hai trường hợp trong hình 33 ứng với trường hợp bậc của đỉnh M là 3 hay là 4. Ta xét hai trường hợp: 2a) Bậc của M là 3. Dựng thêm một tam giác đều ADE ngoài hình vuông ABCD đã cho. Áp dụng định lí 11, ta có MA + MD ME, và suy ra MA + MD + MB + BC EB + BC, và thấy rằng độ dài của cây tối ưu không nhỏ hơn EB + BC. Trong trường hợp này, cây tối ưu có được khi M là giao điểm của DB với đường tròn ngoại tiếp tam giác ADE. Hình 34 Dễ thấy góc E của tam giác ABE bằng 15°, cho nên BE = 2cos 15°. Ta thấy dễ dàng là cây tối ưu trong trường hợp bên phải có độ dài bằng 1 + 2cos 15°. 2b) Bậc của M là 4. 7 Hình 35 Trong trường hợp này ta có MA + MC AC và MB + MD BD. Như vậy độ dài của mạng giao thông ứng với trường hợp này không nhỏ hơn 2 , và đạt được độ dài này khi M là giao điểm hai đường chéo của hình vuông đơn vị đã cho.  Nếu có đúng hai điểm Steiner: Ta thấy như đã lập luận ở trên là bậc của các điểm Steiner thêm vào, mà ta ký hiệu là M và N, phải ít nhất bằng 3. Ta có thể kiểm nghiệm thấy rằng mạng có hình dạng như trong hình 34 (hoặc tương tự như vậy với M nối với A và B, còn N nối với C và D và N đượ c nối với M). Ta dựng hai hình tam giác đều ADQ và BCP ra phía ngoài hình vuông ABCD như trong hình vẽ. 8 Hình 36 Áp dụng định lí 11, ta có thể thấy rằng MA + MD MQ và tương tự là NB + NC NP. Do đó tổng độ dài các cạnh của cây của ta không nhỏ hơn QM + MN + NP PQ, với đẳng thức chỉ khi M và N là giao điểm của các đường tròn ngoại tiếp tam giác ADQ và BCP với MN. Như vậy cây tối ưu trong trường hợp này có tổng độ dài là PQ = 1 + . So sánh đáp số của ba trường hợp ta xét trên, ta thấy giá trị nhỏ nhất của ba trường hợp này là 1 + . Cái điều ngăn cản chúng ta chấp nhận giá trị đã tìm ra 1 + này làm giá trị tối ưu là quan sát thấy càng thêm nhiều điểm Steiner, thì tổng độ dài các cạnh của mạng tối ưu tương ứng càng nhỏ. Trong suốt quá trình lập luận ở trên, chúng ta chưa có một cơ sở nào đặt chân để chứng tỏ được rằng chỉ có thể thêm tối đa 2 điểm Steiner để thiết kế được mạng giao thông tối ưu cho hệ 4 điểm đã cho. Để thấy rằng quả thật mạng tối ưu với bài toán n = 4 điểm chỉ có không quá 2 điểm Steiner, ta buộc phải sử dụng các kiến thức về cây. Trong phần 9 tiếp, ta sẽ chứng tỏ rằng cây tối ưu của bài toán Steiner với n điểm chỉ có không quá n-2 điểm Steiner. Với định lí 13 được chứng minh trong mục sau, bài toán tìm cây Steiner cho tập đỉnh hình vuông đơn vị mới có thể giải quyết triệt để, và độ dài của cây tối ưu cần tìm là 1 + . 3. Phương pháp giải bài toán Steiner tổng quát Như trong mục trên đã phân tích, chúng ta thấy hình học thuần túy không thể giải quyết được bài toán Steiner. Với hình học thuần túy, chúng ta chỉ tính toán được độ dài tối ưu khi hình dáng của mạng giao thông được hình thành. Vấn đề hết sức quan trọng trong việc xác định được hình dáng của cây tối ưu là xác định được số điểm Steiner của cây tối ưu. Một kết quả đ ã biết được nêu trong [2] mà không có chứng minh đi kèm là một cây tối ưu của bài toán Steiner n điểm chỉ có không quá n-2 điểm Steiner. Ta chứng minh khẳng định đó trong định lí sau đây: Định lí 3. Cây tối ưu ít đỉnh nhất của bài toán Steiner n điểm có không quá n - 2 điểm Steiner. Chứng minh. Ta ký hiệu x là số điểm Steiner của cây tối ưu G của bài toán Steiner n điểm. Khi đó G là một cây có x + n đỉnh, và do đó nó có x + n – 1 cạnh. Ta có những nhận xét sau: Nhận xét 1. Những điểm cho trước có bậc trong G ít nhất là 1. Chứng minh: Do G là mạng lưới nối các điểm đã cho, nên không có điểm nào đã cho là đỉnh cô lập trong G cả. Nhận xét 2. Điểm Steiner có bậc trong G ít nhất là 3. Chứng minh: Do sự G là cây ít đỉnh nhất, cho nên các điểm Steiner phải 10 [...]... ti u, ta phi thờm nhiu nht l x n-2 im Steiner v dng mt mụ hỡnh cõy cú x + n nh ri xỏc nh c th v trớ hỡnh hc ca cỏc im Steiner nh ó lm trong bi toỏn 1 mc trờn Nhng ta thy rng ta luụn cú th gi s rng cõy Steiner cú ỳng x + n nh qua cỏc nhn xột sau: Nhn xột 1: Nu cõy ti u G cú mt im Steiner M cú bc dG(M) > 3 thỡ ta cú th coi nú l trng hp suy bin ca th G cú thờm im Steiner N vi bc dG(N) = 3 v dG(M)=dG(M)-1... cú thờm im Steiner M vi bc dG(A) = 1 v dG(M)= dG(A)+1 (hỡnh 38), trong ú di on thng MN l 0 Hỡnh 38 Nh vy, ta cú th ỏp dng nhn xột 1 v nhn xột 2 cú th coi cõy ti u Steiner l trng hp suy bin ca mt cõy G cú tớnh cht l bc ca mi im cho trc ỳng bng 1 v bc ca mi im Steiner ỳng bng 3 Khi ú theo cụng thc tng cỏc bc ca th gp ụi s cnh, ta thu c 2(n + x - 1) = 3x + n x = n - 2, trong ú x l s im Steiner ca cõy... ngha l cõy ti u cho bi toỏn Steiner vi n im cho trc l mt trng hp suy bin ca cõy G cú cỏc tớnh cht sau G cú ỳng 2n 2 nh, trong ú cú n im cho trc v n-2 im thờm vo cú th b trựng vo cỏc nh ó cho trc ca bi toỏn Bc ca mi im ó cho trc trong bi toỏn l 1, Bc ca mi im Steiner ca G (nh thờm vo) l 3 tin, ta s gi G l cõy thit k, dựng tỡm cõy Steiner ti u Cõy thit k cú th khỏc vi cõy Steiner tỡm c, vỡ trong trng... P l giao ca ng trũn ngoi tip tam giỏc BCG vi NG Vi v trớ ca M, N v P c xỏc nh nh vy, tng di cỏc cnh ca cõy ti u l HF Trong hai bi toỏn trờn, cõy thit k v cõy Steiner l ng cu vi nhau Nhng cng cú nhng trng hp khụng phi nh vy Li gii ca bi toỏn Steiner vi n = 4 cho cỏc thnh ph Harburg, Bremen, Hannover v Braunschweig (hỡnh 31) cho ta mt cõy ti u khụng ng cu vi cõy thit k 15 Ti liệu tham khảo 1 Claude... v Nguyễn Văn Vỵ dịch: Lý thuyết đồ thị v ứng dụng, NXB Khoa học kỹ thuật, H nội (1971) 2 Dietmar Cieslik, The Steiner Ratio, Kluwer Academic Publisher (2001) 3 Reinhard Diestel, Graph Theory, Springer Verlag (2000) 4 Kenneth H.Rosen, Discrete Mathematics And Its Applications Bản tiếng Việt: Toán học rời rạc ứng dụng trong Tin học NXB Khoa Học v Kỹ Thuật, H Nội 1998 Ngời dịch: Phạm Văn Thiều - Đặng Hữu . của bài toán Steiner phải là một cây mà cạnh của nó là các đoạn thẳng. Ta gọi mạng tối ưu trong bài toán Steiner là cây Steiner. 2. Phân tích bài toán Steiner. kỷ, bài toán của Fermat lại được phát hiện lại trong một khía cạnh mới bởi nhiều nhà toán học khác. Người ta tổng quát bài toán Fermat nh ư sau: Bài toán

Ngày đăng: 22/03/2014, 17:20

TỪ KHÓA LIÊN QUAN

w