1. Trang chủ
  2. » Luận Văn - Báo Cáo

Thiết kế cánh bơm hướng trục bằng phương pháp vozhexenski pekin

9 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 372,21 KB

Nội dung

NGHIEN CUU - TF5A0 D | THIET KE CANH BOM HUdNG TRUC BANG PHl/aNG PHAP VOZNHEXENSKI-PEKIN IMPELLER DESIGN OF AXIAL PUMP OF HIGH EFFICIENCY BY METHOD OF VOZNHEXENSKI-PEKIN TS Pham Van Thu, TS Dinh Anh Tuan Vien Bom va Thiet bi Thuy ldi C:6 nhieu phddng phdp thiit ke cdnh cua cdc logi mdy bdm hddng true dda tren cd sd lj thu khdc Cd mdt phddng phdp diidc Lien Xo cu sd dung vd cung dddc nghiin cdu dng dung thilt k Viin Bdm vd Thiit bi Thuf ldi Id phddng phdp phddng trinh tich phdn cda Voznhexenski-Pekin Bdy mgt nhdng phUdng phdp cho kit qud tdt Cdc bdm thiit ke theo phUdng phdp ndy diu co hieu s cao Sau nhiiu ndm nghien cdu vd dng dung, Viin Bdm vd Thiit bi Thuf ldi dd tSng hdp qud trinh ti todn cua phUdng phdp ndy thdnh 60 budc vd gidi thieu tdm tdt cd sd If thuyit cda phddng phdp tren Tii khoa: Bdm hddng true, mdy dgng ldc ABSTRACT There are many methods to design impeller ofaxialpump based on different theories A meth in the former Soviet Union also applied for research and design in Institute for pump arui water re machine is the integral method of Voznhexenski-Pekin This is one ofthe methods for best effectively designed by this method are highly efficient After many years of research and application Institute fo and water resources machine have integrated computing process of this method into 60 steps and introduce the basis theory of methods Key words: Axial pump, dynamic machine TONG QUAN bommaucosanhoaccacbommo hinh co so v6ng quay dac tning n, tUOng tU Theo phuong phap niy De tinh toan canh banh coi^ tac va canh ngitcri ta chi viec nhan cac kich thUcfc ciia bom mau hudng dong bom hU6ng true i ^ d i ta co thS sti dur^ vdi mot he s6 xac dinh dila theo cac thong sd lam mot cac phuong phap sau: viec cila bom thiic va bom man De tinh toan theo philcfng phap phai co ban thiet ke chuin cOalxJm 1.1 PhilOi^ phaptoJOngtii hinh hoc man hoac bom mo hmh va dac tinh nang \\ic^ ciB La phiiong phap don gian nhat, diia vao cac bom de diia vio xac dinh cac hi so chuySn i& TAP CHl CO KH J VIET NAM • S6 (Thang nam 2013) NGHIEN Ctfu-TRAO061 1.2 Phifdng phdp m^t toa d0 nha may chl tao may cdnh Khakcop, Lien Xd cu Li phuong phap thiet k^ don gian nhiing 1.5 Phuong phap phUtfng trinh tich phdn cua CO hi?u qui Profin cdnh thiet k^bao ddm goc vao Voznhexenski-Pekin va g6c ciia canh phij hop v6i d|c tinh ddng chay n^n phuong phap ndy dUdc sii dung kha rpng rai La phuong phdp dUpc sit dung phd bien d Liln Xd cii di thiet ke bom hudng true, phuong Tuy nhi^n sU dung phuong phdp phdp Voznhexenski-Pekin coi dUdng nhdn la mpt doi h6i ngUdi thiet ke phai co kinh nghiem cung trdn (mdt bdn kinh) Theo phuong phdp nay, viec lUa chpn m6t s6 cdc thoi^ so hinh hpc ban tdc ddng c6a cdc prdfin lln ddng chdt long dupc dau ciia ludfi cdnh Vi$c thiet k^ ludi cdnh chi co thay the bdi cdc xody phdn bd dpc dudng nhdn the thUc hi§n bang phep dUng hinh thu cong kho theo mdt quy lu^t xdc dinh Ddng chdy tong hpp lap trinh tinh todn tr^n mdy vi tinh dUOc xdc dinh bang tdng ciia ddng song phang khdng nhieu vd ddng cam Ung tao bdi cdc xody 1.3 PhUcfng phdp lUc n ^ g phdn bd trin cdc dudng nhan prdfin Bang cdch xdc djnh dudng ddng tdng hpp ta se xdc dinh Cdnh banh c6ng tac theo phUcfng phap dudng nhdn cua prdfin, ciing la prdfin ddy dUpc tinh toan cho mpt s6 tiet di^n tU bdu canh cd chilu ddy mdng vd cung canh tofi ti^t dien ngoai bien Cac profin Ung vdi moi ti^t di^n khdc se c6 cac h^ so lUc ndng Dl xdc dinh prdfin day cdnh cd chilu ddy khac nhau, ta chpn cdc prdfin dpng thod man hiiu han ta dap dp ddy tren dudng nhan prdfin cac h^ so lUc ndng va lUc can cho cdc tiet di^n theo mdt quy lu^t xdc dinh bdng cdch chpn cdc va do cdc tiet di$n khdc se c6 cac pr6fin prdfin th\£c nghi$m c6 d^c tfnh d^ng t6t rdi d^g khac ldy quy ludt phdn bd dp ddy ciia nd de ldm mdu chuan cho prdfin thilt kl mdi Nhupc dilm cua phUPng phdp la xau canh kho ddm bdo sU suon d^u ciia Id cdnh 1.6 Phuong phdp phdn bd xody cua LlxdkhinChinh vi vdy, qud trinh thiet k6 phdi dilu Simdndv chinh cac thong so nhilu lan gay kho khan cho vi^c l^p trinh va tinh todn tren mdy vi tinh Tuy Phuong phdp phdn bd xoay Llxdkhinnhien, phuong phdp co Uu dilm Id khoi lupng Simdndv coi dUdng nhdn ciia prdfin Id mdt cung tinh todn don gidn va sii dung cdc pr6fin dgng cong bdt ky (cung nhilu bdn kinh) Theo phUong da dupc khdo nghiem co dp tin c^y cao, hi^u sudt phap nay, tdc d0ng ciia cdc prdfin len ddng chdt cao ldng dupc thay thi bdi cac xoay phdn bd dpc theo dudng nhdn theo mdt quy luat xac dinh Ddng chdy tdng hpp dUpc xdc dinh bang tong cua ddng 1.4 Phuong phip x x r z song phdng khdng nhilu vd ddng cdm iing tao bdi La phuong phdp dUa tren gia thuyet dp cdc xody phan bd tren cdc dudng nhan ciia prdfin cong ciia dUdng nhdn profin co dnh hu6ng quyet Bdng each xac dinh dudng ddng tong hpp ta djnh tdi lUu so v|in t6c hay cpt dp canh tao nen se xdc dinh dudng nhan ciia prdfin, cung Id Diia theo quan h$ cua he so lUc nang Cy v6i lUu prdfin canh cd chilu ddy mdng vd cimg, trUdng so vSin toe bao quanh profin va vdi gdc d^c trUng hpp ndy khdng the gidi phUong trinh tich phdn cho dp cong c£ia profin p^, ta xac dinh dUpc gdc p^ bang phuong phap gidi tich md phdi gidi bang theo cdc thong so hinh hpc va dpng hpc cua cdnh phuong phdp gan dting hen tilp Vi vdy, viec gidi Trong trUdng hop nay, dudng nhdn cua pr6fin Id phuong trinh tich phan se rat phUc tap, nhUng ddp lai phuong phap cho cdc kit qud phu hpp mOt cung trdn hon vdi ban chat dong chay ^ Phuong phdp ndy dUpc sii dung rdng rai d cdc TAP CHf CO KHI V1£T NAM • S6 (Thang nam 2013) NGHIEN CUTU-TRAO Ddi De xdc dinh prdfin cd chilu day hflu han, cuBg nhu phuong phap Voznhexenski-Pekin ta ddp dp ddy tren dUdng nhan prdfin theo mdt quy lu^t xdc dinh bang cdch chpn cdc prdfin thUc nghiim co ddc tinh ddng tdt rdi lay quy ludt phdn bd dp day cua nd de ldm mau chxidn cho prdfin thiet ke mdi 1.7 Phuong phdp dilm k^ di c6a LIxdkhin Ld phuong phdp tinh todn canh cd dp ddy hUu h ^ , tuong tif nhU phUOng phdp phdn bd xoay tren cung mdng cua LIxdkhin-Simdndv, theo phuong phdp ndy, tac ddng cua prdfin cdnh CO chilu day hiiu han len ddng chat long dupc thay the bdi cdc xody, ngudn vd tu phan bd tren dudng nhdn prdfin Dudng ddng khep kin cua ddng tong hpp tao bdi ddng song phang khdng nhilu vd cdc ddng phy t^o bdi xoay, ngudn vd tu se la chu tuyln prdfin Phuong phap ndy, it dUpc sii di^ng dl thilt kl cdnh bom vi nd khd phUc tap ddi hdi khdi lupng tinh todn ldn Voznhexenxki - Pekin dUpc N.A Koloconxov ehinh li lai la phUOng phap dUpc dung phd biln nhdt nghanh chl tgio bdm, ^d dang tinh toan cudi cimg cua nd don gian, cac bOm tinh toan theo phuong phap diu ed chdt lupi^ cao SU phiic tap vile nghien eUu ddng chdy qua lUdi profin la anh hUdng tUong ho ciia tdt ca cdc profin Khi ldm vile, xung quanh mdi mpt la eanh cua lUdi, c6 mpt lupng xoay vdn tdc Su tdc dung tUOng ho gifla lUdi»Profin vdi ddng song phang d vd cUc, lan tinh gan diing lan thii nhat cd thi thay bang sU tdc dung tuong ho ciia cdc diem xody dUpc phdn bd tren dudng nhan etta profin Ndi chung, lUpng xoay van tdc xung quang m0t profin cho trUde ndo d6 ludi, ludn ludn khac vdi lUpng xody xung quanh mdt profin don ddc Trong phuong phap tinh todn ndy, tinh anh hudng tUOng ho cua proiin ludi, ta bo qua dnh hudng chilu day cua cdc profin gdy Dl xdy dung cdnh bdnh cdng tdc va canh ddn hudng phdi tinh toan xdy dUng cdc prdfin cdnh d cdc tilt dien khac ciia la cdnh Cac Hai phuong phap phdn bd xody tren cung tilt dien dUpc t?o bdi cac mat tru ddng t ^ mdng cua LIxdkhin - Simdndv vd phuong phap cat eae la cdnh Trai ede tiet dien trin m|t cdc dilm ky di ciia LIxdkhin dupc sii dpng chu phdng va klo ddi vl hai phia ta se cd lUdi thing v6 ylu dl tinh todn tuabin hUdng true h ^ cua cac prdfin Ngdy nay, vdi sU phat triln cua tin hpc Trong phuong phdp cua Voznhexenski - -' thi viec tinh todn cdnh bdnh cdng tac hay cdnh Pekin dUdng nhdn cUa cdc prdfin Id cdc cung tr6n hudng bang hai phuong phdp ndy khdng cdn la mdt bdn kinh, coi nhU cdc prdfin cd chilu day van dl kho khan mdng vd cimg Tac dung cua edc dudng nhdn len dong chdt long chay bao dUpc thay bing cac PHfONG P H A P T H I E T KE C A N H CUA xody vdi mat dp Y(S) phdn bd tren dUdng nhan VOZNHEXENSKI-PEKIN [3] xem hinh Nguyen tac tmh todn h$ thdng cdnh may LUu sd van tdc trin phan td dUdng nhdn thuy lUc loai hudng true nhd gidi phUOng trinh ds xac dinh bdng; tich phdn chdy bao lUdi eac cung mdi^, da dUpc (D df = ( W -W^ds = y(s) ds Giao sU TrUdng Dai hpe Bach khoa Leningrat (nay Id Xanhpetecpua) cd ten Id I.N Voznhexenxki l^p LUu sd van tdc theo dUdng nhan prdfin.* nen vdo nam 1930 - 1935, sau dudi sU lanh dao L L L ciia dng VF Pekin, A.F Lexokhin vd I A.Ximonov r =Jrfr = J(iry-(ry)ds=J^(s)ds {%) da tilp tyc nghien cUu Hien nay, phUOng phdp TAP CHf CO KHf V I £ T NAM • S6 (Thang ndm 2013) NGHIEN CUfU-TRAODOI Trong chay bao profin co chilu day m6ng Vdiy(s)ds = dr(s) = dr vd cimg, dudng nhto pr6fin c6 thexem nhu dudng Y(S) = dr /ds : Mat phan bd xoay dimg t6ng hop cia dong song phIng khdng nhieu t - Toa diem khao sat vJ dong cam iing tao bdi cac xoay phan bo tren r(s,t) - Khoang each tU diem khao sat cua dudng nhan tft ca cac profin Vi vay ham dong d tai mdt diem bat ky nio ciia ciu^ don dgc prdfin tdi diem A, tai dd cd lUong xoay dT dr - Luong xoay van tdc (hinh 1) nam each dau miit cua no mdt khoang cdch la t duoc xac djnh b ^ g bilu thUc: Khidd: Trong dd ham ddng ciia cac diem xoay cua cung: W ) = 'P.CO + j~lr(s))ar(,s,t)ds = const (3) Vile thUc hien dinh dl TraplUghin d mep se duoc dam bao bang cdch chon: y(L)=o Hinh Sddd ludi prdfin mong vddmgvd phdn bo xody trin dudng nhdn[8] Khi chuyin sang chdy bao cung cua lUdi, phuong trinh tich phan (3) can phdi dUa vio nhUng thay doi sau: di^j = Km '^«' y (s)iis " " ^ h i r Yhir 2;r ^„ (6) Trong dd: r^ - Khodng cdch gifla dilm z Hdm ddng cua ddng chdy khdng bi nhieu cua dong chay md tai dd xdc dinh hdm so ddng va loan i|/pCan duoc xdc dinh theo v^n tdc tUong ddi dilm s tren cung thU k cua lUdi trung binh hinh hoc ludi w^ Tdng vd cung cua cdc Idgarit cd the thay Bin d^u tich phan can thay hdm ddng cua ddng cam dng tao bdi cac xody phdn bd bang tich vd cimg dau Idgarit ma tich l^i hen cung cho trUdc vd duoc xdc dinh theo cdng ed the bieu thi bang ham lUpng giac Cudi cimg, ham ddng trUdng hpp ludi ciia cac cung cd thiJc chilu ddi ddy cung L^^ = 1, bUdc tUOng ddi T^ = T/L dupe xde dinh bang bilu thflc dv,= IK (5) Bdng hdm ddng phflc tap hon ciia ddng dmflngt?o bdi cdc xody Uen hpp nam tren tat ea cdc cung cfla ludi (hmh 1) TAPCHfCOKHfVlfiTNAM Ky hilu bieu thflc cdn Id K^, ta cd: ^ • Sd (Thdng ndm 2013) NGHliN cUU-TRAOeOl M ' ( t ) = ^ ( t ) + ^ \r(.s)hKds 2,7r (8) Dilu kien nhu thi dUdc gpi li vio khdng va, vi duoc vilt bang bilu thdc: Q y(0)=0 Ngoii ra: \r(s)ds.= ^ (13) (9) Dilu kiln niy sl lim cho chSt lUdng xam thilc va nang luong cua cdnh banh cdng tdc tot Dap sd chung cda phUdng trinh tich phan hdn vi se giam nhe cdng vile tinh todn di rdt (8) dudi dang thdng s6 li: nhilu Khi dd ddp so cda phuong trinh (8) c^dang y(s)=f(T,S,ei,^,w_,w_^C') ^0 (14) Thay vio phUOng trmh (2-54) ta dUdc: (15) ^=/(-r,«,/S,w,c') Tim ham sd f,, if^ bang each tich phan Trong dd C* la hang sd tich phdn bat ky, phuong trinh (8) se dan din he thdng (n + 2) hdng sd niy cd thi xdc dinh bang cdch dimg dinh phuong trmh tuyln tinh vdi (n -f 2) an sd (n dl TraplUgin the hi|n qua cdng thilc (4) -e 2) dilm cda cung NgUdi ta da tinh toan xong Khidd: vdi n = 4,6,8 (10) -f/TM,«J Ky hilu Qj li gdc ddt cdnh d ldn tinh gan ddng thd nhat lay bang p_ la gdc giuta trvc lUdi va hudng vdn tdc w_ SU nhieu loan chiy bao cung cho trUdc hi thdng xoay hin hop tat ca cac cung cdn 1^ cda ludi gdy nin, sl lam cho gdc dat a khac vdi ttj mdtlUdng (11) Cudi cimg bilu thdc (2-55) cd d^g: w.in =UTM,>^«) Gidi cac phUdng trinh him ddng d tren vdi cac gii tri khac cua budc lUdi tuong doi T/L, gdc dat cdnh a vi gdc ddc tning cho dg cong cua prdfin |3^ cho thdy ring, him L*(T/L, a) = TJ (W,^,L,|SJ it phu thupc vio gdc j3^ Vdi cac gid tri ^_ nhd, dai luong (W ,L,/3,) t^ 11 vdi lUu sd T, Tren hinh 2-7 la cdc dddng cong dl :^c dinh gii trj him L* phu thudc vio budc ludi tuong ddi T/L dl^ vdi cac gia tri a khdc cua profin ludi Doi vdi bom, d^ luong Aa luon dUdng (12) Khi a < (35° + 40°), gSn dung cd thi coi ring /la chi phu thudc vio T^ vi ^^ Cdng thdc (12) la ddp sd cua phUOng trmh tich phdn Khi a > 45°, nghia la tuong dng vdi cdc cdnh cda canh hudng ddng vi cac tilt di^n d Theo dl nghi cua l.N Voznhexenxki, hai sat bdu cda canh banh cdng tdc,luc dd cdc gid tr} dng V.EPekin vi N.A Koloconxov dd hoin thinh Aa sl ldn hon Trong nhOng trudng hpp ndy /!« h$ thdng tinh todn chay bao ludi cua cdc cimg vdi cdn pht,i thudc vao ca a, xem hinh dilu kiln phu thim: gdc tdi bang khdng TAPCHlCOKHlVlfTNAM • Sd (Thdng nam 2013) N G H l i N CUfU - TRAO D61 Dal lupng Af Uln h i vdi dd cong cua cung bdng: tg- (16) 10 14 2 2 /^^ mnh2 Biiudoquanhi Aa = f(TQ,/3o) W- Bi tinh toan Ifldi cdnh theo phflong phdp Vonznhexenski - Pekin, cdn xac dinh so bd trfldc cdc thdng sd kit cau chinh ciia phan dan ddng va cac tam gidc v | n tdc Trfldc xay dUng dfldng n h ^ prdfin hoan chinh can phdi tfnh bd sung dp cong k l tdi anh hudng cua chilu day cua prdfin cho dgic tinh tdng hop cfla lUdi prdfin CO dp diy sai khdc khdng nhilu so vdi dac tinh cua ludi tinh todn Gid tri dp cong bd sung cho prdfin xdc dinh theo bieu dd d hinh Hmh Do thf quan hi Af / C ^f(L/T, ){6] Tfl ta cd: ^\ Tren dd thi: Af = Af/L Dp cong tUPng doi tiojiM sung them ciia cung tuong dUOng so vdi cungtinh todn Vdi Af=i^-i^: Dp cong tinh bd sung thim cua cung tUOng dUOng so vdi cung tinh toan "KT T (17) D0 cong cua cung tUOng duong: li„=^,+Ap^ (18) Trong jS^ - Dp cong tinh toan Chilu dai cung va bdn kinh eong cua cung tuong duong dupe xde dinh bang cdc bilu thflc: 1„ = 0,0175 Lft,sin/3„ R,,= L/2sin^„ ~ ^maJ^ '• ^ ^ ^^y Wc(ng ddi ldn nhdt ciia prdfin 6^ = 90° - fi^: Gde tao bdi phuong cua v ^ toe W^ vatr\icludiz ^, = arctg(Wz/W^u) A^^ =2arctg\ 2,^fS, (19) (20) Cung tuong duong chinh li prdfin cd chilu diy mdng vd ciing, la dudng nhdn cua prdfin D l nhdn dupc prdfin cd dp day ta dimg quy ludt phan bd dp diy cda cac profin mau cd dac tinh dpng hpc tdt v i dda vao chilu day 6^^ chpn trUdc d l dap dp diy cho cung tuong dUOng Xdu cac prdfin lai vdi theo quy ludt UnhS.CdcdUdngcongbiiudilnquatrhiphtfthudccdaL* xic dinh ta se nhan dUpc Id cdnh hodn chinh vio budc ludi tUdng ddi T/L vd gdc ddt cia prufin [3] T ^ P CHl CO KHl VI$T NAM *l* Sd (Thdng ndm 2013) NGHIEN CUU - TRAO 06\ KET QUA NGHlfiN CtOj C A N H BANG PHlTONG P H A P VONZNHEXENSKI - PEKIN 3.1 So lieu bom VBHT4500-9 diloc thilt kl bang phiiong phap Vonznhexenski - Pekin [10] TT n H M(Nm) Ntl N/10 989 5.105 Q 5725 n 68.33 362.87 79.640 11.655 927 882 5.509 5637 70.42 374.16 84.631 12.017 5.849 5583 71.40 388.06 88.998 12.464 871 856 5.942 5566 71.89 390.28 90.120 12.535 6.045 5523 72.09 392.93 90.979 12.620 827 6.258 5426 72.97 394.83 92.531 • 12.681 776 6.688 5288 72.97 411.18 96.368 13.206 739 732 7104 7.140 5244 75.49 418.67 101.519 13.447 5183 74.27 422.69 100.836 13.576 5104 5030 74.74 426.58 102.406 75.31 74.36 430.94 104.238 13.701 13.841 441.19 105.379 14.171 4894 4871 75.32 447.72 108.314 76.23 453.08 456.04 110.927 14.380 14552 10 710 7.363 tl 12 688 670 7.605 7.803 13 14 646 631 8.121 15 16 618 608 17 18 19 20 4956 8.356 8.542 4828 76.73 112.384 14.647 8.699 4803 45704 113.868 14679 586 574 9.106 9.177 4779 4639 77.57 80.04 461.25 77.64 465.20 118.579 116.012 14815 14942 559 9.306 4504 75.80 469.19 114.221 15.070 551 542 9.400 9.521 4432 7413 476.79 113.517 15.314 73.86 479.02 113.639 15.385 533 9.595 4380 4286 72.49 481.39 112.075 15.462 518 506 9.669 9.810 4094 69.24 485.02 15.578 3982 67.96 487.62 107.864 106.441 10.115 3860 106.402 15880 10.448 3755 67.00 66.47 494.42 26 486 468 500.67 106.892 16.081 27 460 10.574 3682 65.27 506.14 106.103 16.257 21 22 23 24 25 r:=g-~^ , ^^ ,:.^ »M«.«I { , T*v^ ã**^ M ằô ô0 ,rcc 5,K (KC " ^ ira y(,u3,h) Hinh S: Bdc tinh ndng hidng bdm VBHT4500-9 [10] TAP CHi CO KHl VIET NAM *•• Sd (Thing ndm 2013) 15.662 NGHIEN COU - TRAO B I 3.2 Sd Ulu bom HTN1700-2.7 diipc thilt kl bang phtfong phap Vonznhexenski - Pekin [9] i TT P(bar) n H/2 0.212 1903 1.315 Q 0.551 0.74 0.219 1795 1.409 0.544 0.225 1708 1.497 0.540 0.229 1624 1.557 0.237 ' 1532 0.243 M(Nm) Ntl N/8 60.17 14.222 2.416 0.75 62.04 64.34 15.037 15.845 2.491 0.77 0.518 0.75 65.47 2.628 1.668 0.510 0.76 68.17 15.818 16.706 1461 1.760 0.503 0.78 69.41 17.381 2.737 2.787 0.247 1413 1.826 0.497 0.79 2.814 1370 1.883 0.490 0.257 1290 2.007 0.478 0.80 0.80 70.08 70.73 17.822 0.250 18.109 18.819 2.839 2.937 10 0.261 1255 2.077 0.476 1223 2.142 0.473 74.23 75.12 2.980 0.266 0.81 0.82 19.400 11 3.016 12 0.269 1186 2.215 0.274 1159 2.271 0.83 0.84 75.94 13 0.468 0.464 19.874 20.343 76.79 20.671 14 0.277 1136 2.316 0.459 0.83 15 0.279 1117 2.348 0.453 0.82 77.98 78.97 20.859 20.866 16 0.281 1098 2.381 0.447 0.81 79.81 20.881 3.171 3.204 17 0.283 1080 2.405 0.440 0.80 80.78 20.737 3.243 18 0.284 1064 2.436 0.434 0.79 0.285 1056 2.454 0.433 0.79 20.756 20.851 3.266 19 81.36 81.97 20 21 0.286 1045 2.473 20.815 1028 2.510 0.81 0.78 80.41 83.54 20.899 22 0.288 0.294 0.429 0.424 999 2.588 0.420 0.77 85.75 23 24 0.300 966 2.673 0.77 87.68 0.304 933 2.753 0.411 0.402 21.299 21.576 0.76 21.691 3.576 25 0.308 910 2.815 0.395 0.77 89.08 88.14 21.824 3.539 26 0.313 883 2.892 0.387 0.75 91.42 21.961 3.670 27 0.315 872 2.922 0.384 0.74 92.30 22.000 28 0.329 817 3.108 0.369 0.73 95.58 22.527 3.706 3.837 29 0.335 788 3.201 0.359 0.73 96.28 22.551 3.865 30 31 0.351 743 3.396 0.349 0.72 100.58 23.228 4.038 0.363 688 3.590 0.325 0.70 102.50 22.917 4.115 32 0.363 660 3.635 0.305 0.64 21.719 4.216 33 0.355 671 3.544 0.303 0.62 105.01 105.54 21.101 4.237 34 0.346 651 3.498 0.280 0.56 106.02 19.196 4.256 35 0.337 614 3.463 0.245 0.48 107.11 16.650 4.300 T^lPCHlCOKHJVlfiTNAM 73.15 2.583 3.049 3.083 3.131 3.291 3.228 3.354 3.443 3.520 "l* Sd (Thdng ndm 2013) NGHIEN CUU - TRAO l i.on 0.90 o.ao \ 60 0.50 0.40 0.30 0.20 0.10 O.OO 000 10 -H-f(Q) [>7n 0?n 030 040 0^ -Poly (n=)tQ)) 060 Hmh 6: Bdc tinh nang lUdng bdm HT1700-2.7 [9] KET LUAN Cd rat nhilu phuong phap tinh todn thilt k l canh bdnh cdng t i c b o m hudng true Cdc phUdng phap niy, d i u dl,Ia trin n i n tang la cac trudng phai ly thuylt dupc d l cap tdi vdi cac mdc dp phUc tap khdc v i dd dUpc thUc nghiim kilm chdng Tuy v i o tinh nang v i y l u cau cu t h i cua tang loai canh bOm hudng true m i ngUdi ta lUa chpn phUOng phap thilt k l phd hpp Ddi vdi Ip^i mdy bom hUdng true, phuong phdp Vonznhexenski - Pekin da duoc sfl dpng dat h i l u qua cao d Viet Nam Cling nhii Liln Xd cu • Ngiy nhan bii: 10/4/2013 Ngay phin bien: 10/5/2013 Ngtfdi phan biln: GS, TS Nguyin Thi Mich, Bd mdn May va Tti ddng Thuy khi, TrUdng Dai hpc Bdch Khoa H i Npi Tai lieu tham khao: [1] Ll Danh Liln (2007), Ly thuylt cdnh, TrUdng Dai hoc Bach Khoa Ha Ndi (Chuong trinh nang cao) [2] Le Danh Lien, Pham Van Thu (1996), Nghien cdu thilt kl cdnh cdng tdc vd cdnh ddn hudng ciia hdm hUdng true TX 75 -2000-9, Thong tin khoa hoc cdng nghe Thuy lpi - So 3- 1996 [3] A.A LOMAKIN, Ngudi dich: Le Phu, Ll Duy Timg, Dang Xuan Thi (1971), Bdm U tdm vd bdm hudng true, NXB Khoa hpc Ky thuat [5] A K MMXAtoOB; B.B.MAmOmEHKO (1977), nOnACTHblE HACOCbl TeopM pacicT » KOHCxpoBaHMe, MoCKBa MauiHHOCTpceHHe [6] B.A SHMHHUKoro H B.A.yMOBa (1986), ^OnACTHblE HACOCbl CnpasOMHiiKjleHiiHrpaB ManiHHOCTpoeHMe /leHMHrpaflCKoe OTfleneHMe [7] B.H A3APX (1953), HACOCbl, karanor CnpaBoiHHK, MocKBa MaiuHHOCTpoeHHe [8] r.B BHKTopoB (1969), rHflposMHaMHieCKaa Teopna pemeroK, MoCKsa [9] Pham Van Thu (2012), Bdo cdo kit qud dl tdi thiet ki, che tgo mdy bdm sd dung dgng cd 33kw phit hdp vii ddng bdng song Cdu Long [10] Pham Van Thu (2012), Bao cdo kit qud nghien cdu, thilt kl chl tgo mdy bdm HT4500-9 TAP CHJ CO KHl VIET NAM • Sd (Thang ndm 2013) ... NGHlfiN CtOj C A N H BANG PHlTONG P H A P VONZNHEXENSKI - PEKIN 3.1 So lieu bom VBHT4500-9 diloc thilt kl bang phiiong phap Vonznhexenski - Pekin [10] TT n H M(Nm) Ntl N/10 989 5.105 Q 5725 n 68.33... Liln Xd cii di thiet ke bom hudng true, phuong Tuy nhi^n sU dung phuong phdp phdp Voznhexenski -Pekin coi dUdng nhdn la mpt doi h6i ngUdi thiet ke phai co kinh nghiem cung trdn (mdt bdn kinh)... NGHIEN CUTU-TRAO Ddi De xdc dinh prdfin cd chilu day hflu han, cuBg nhu phuong phap Voznhexenski -Pekin ta ddp dp ddy tren dUdng nhan prdfin theo mdt quy lu^t xdc dinh bang cdch chpn cdc prdfin

Ngày đăng: 29/11/2022, 17:21

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w