1. Trang chủ
  2. » Giáo Dục - Đào Tạo

(SKKN HAY NHẤT) tiếp cận một số bài toán khó về số phức bằng công cụ modun

18 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 18
Dung lượng 1,04 MB

Nội dung

MỤC LỤC Mở đầu 1.1 Lí chọn đề tài 1.2 Mục đích nghiên cứu 1.3 Đối tượng nghiên cứu 1.4 Phương pháp nghiên cứu 1.5 Những điểm SKKN Nội dung sáng kiến kinh nghiệm 2.1 Cơ sở lí luận sáng kiến kinh nghiệm 2.2 Thực trạng vấn đề trước áp dụng sáng kiến kinh nghiệm 2.3 Các sáng kiến kinh nghiệm giải pháp sử dụng để giải vấn đề 2.4 Hiệu sáng kiến kinh nghiệm hoạt động giáo dục, với thân, đồng nghiệp nhà trường 3.Kết luận, kiến nghị 3.1 Kết luận 3.2 Kiến nghị UAN VAN CHAT LUONG download : add luanvanchat@agmail.com MỞ ĐẦU 1.1 Lí chọn đề tài Trong chương trình tốn học phổ thơng, có phần nội dung đưa vào giảng dạy lớp 12 thời gian gần đây, chương Số phức Mặc dù khơng cịn q nội dung gây cho học sinh giáo viên khơng khó khăn nghiên cứu học tập đặc biệt toán mức độ vận dụng cao Nội dung chương số phức giúp cho phương trình bậc hai, bậc n ( ) trở nên “ đẹp “ hơn, giải trọn vẹn Đặc biệt, giúp học sinh khơng bỡ ngỡ tiếp cận với khái niệm hàm số phức học trường Đại học Trong đề thi THPT quốc gia số năm trở lại thường xuất số toán số phức mức độ vận dụng cao gây nhiều khó khăn cho học sinh Chính kiến thức nên học sinh giáo viên khơng tránh khỏi khó khăn giải tốn, đặc biệt chứng minh đẳng thức bất đẳng thức số phức Việc sử dụng khái niệm modun số phức cách tiếp cận giúp cho học sinh cảm thấy vấn đề trở nên gần gũi, đưa toán số phức tốn hình vectơ tốn trị tuyệt đối Từ suy nghĩ nên chọn đề tài “Tiếp cận số tốn khó số phức công cụ modun” Hy vọng qua học sinh cảm thấy toán “ Số phức” khơng cịn q khó 1.2 Mục đích nghiên cứu Mục đích tơi nghiên cứu đề tài nhằm cung cấp thêm cách khai thác mới, cách giải cho toán số phức để từ người học tốn có thêm cơng cụ hiệu để giải toán 1.3 Đối tượng nghiên cứu Đề tài nghiên cứu lớp tốn số phức chương trình lớp 12 THPT 1.4 Phương pháp nghiên cứu Phương pháp nghiên cứu xây dựng sở lí thuyết 1.5 Những điểm sáng kiến kinh nghiệm Đề tài sử dụng chủ yếu tính chất modun số phức để giải dạng tốn thuộc dạng khó số phức 2.NỘI DUNG 2.1 Cơ sở lí luận UAN VAN CHAT LUONG download : add luanvanchat@agmail.com Phần I : Lý thuyết 1.Khái niệm: Một biểu thức dạng z = a + bi , a b số thực i thỏa mãn i = -1 gọi số phức a gọi phần thực, b gọi phần ảo i gọi đơn vị ảo - Tập số phức kí hiệu C - Số phức có phần ảo gọi số thực nên R C - Số phức có phần thực gọi số ảo 2.Hai số phức Cho hai số phức z = a + bi z’ = a’ + b’i ( a, b, a’, b’ số thực ) Hai số phức Cộng, trừ hai số phức Số đối số phức z = a + bi số phức - z = - a – bi ; z + (-z) = Nhân hai số phức Modun số phức, số phức liên hợp z = a + bi (a, b z = a + bi (a, b Ta có: ) modun z ) số phức liên hợp z = a - bi z số thực z = z số ảo z = Chia cho số phức khác - Nếu z = a + bi (a, b ) khác khơng số phức nghịch đảo : UAN VAN CHAT LUONG download : add luanvanchat@agmail.com - Thương z’ cho z khác không : Ta có : Định lý viet cho phương trình bậc hai: a/ Cho phương trình : az2 + bz + c = (a ) có nghiệm z1, z2 : z1, z2 nghiệm phương trình: b/ Ngược lại, z2 – Sz + P = Biểu diễn số phức : - Cho số phức z = a + bi ( a, b ) + Điểm A(a, b) biểu diễn số phức z + (a, b) biểu diễn số phức z - Cho số phức z’ = a’ + b’i (a’, b’ ) có điểm biểu diễn B(a’, b’) Khi : (a’ – a ; b’ – b) biểu diễn số phức ( z’ – z) Ngoài ta cịn có : AB = Phần II : Bài tập Dạng 1: Các tốn tính giá trị biểu thức Bài 1: Cho = 1, = Tính : a/ b/ Hướng dẫn : a/ Từ Từ : Vậy Chú ý: Nếu sử dụng thay vào giả thiết giải Tuy nhiên việc giải hệ phương trình phức tạp b/ Từ UAN VAN CHAT LUONG download : add luanvanchat@agmail.com Ta có : Thay vào đẳng thức: được: Giải phương trình tìm được: Vậy hay Bài tập áp dụng : Cho Bài 2: Cho Tính thỏa mãn : Tính : Hướng dẫn : Từ giả thiết ta có : ta tìm : Lấy (1) chia (2) : , Biến đổi tương tự có : Từ , UAN VAN CHAT LUONG download : add luanvanchat@agmail.com Vậy Dạng : Chứng minh đẳng thức Bài 1: Giả sử : phương trình : , Chứng minh: nghiệm có modun b2 = ac Hướng dẫn: Xét phương trình: có nghiệm Khi có : Từ (1) : với Vậy Bài tập áp dụng : Cho Chứng minh : phương trình : , nghiệm có modun Bài : Giả sử : Chứng minh: có thỏa mãn: Hướng dẫn : UAN VAN CHAT LUONG download : add luanvanchat@agmail.com Ta có : , tương tự cho Vậy Bài 3: Cho số phức Chứng minh: Ta có : VP(1) = Vậy VT(1) Bài 4: Chứng minh : với hai số phức Hướng dẫn : Ta có : (1) tương tự có : lấy (1) + (2) được: (2) (đpcm) UAN VAN CHAT LUONG download : add luanvanchat@agmail.com Chú ý: Chúng ta đặt : theo cơng thức tính modun để chứng minh Tuy nhiên cách dài phức tạp Bài tập áp dụng : Chứng minh với hai số phức ta có : a/ b/ Bài 5: Cho Chứng minh: Ta có : Có : Lại có : (2) Từ (1) (2) có (đpcm) Bài : Cho số phức thỏa mãn : Chứng minh có số phức Hướng dẫn: Từ : Vậy có số phức UAN VAN CHAT LUONG download : add luanvanchat@agmail.com Dạng 3: Chứng minh số thực, số ảo: Ta sử dụng nhận xét : z số thực z số ảo Bài : Chứng minh: số thực với Hướng dẫn : Ta có : Vậy số thực Chú ý : Chúng ta đặt : , chứng minh z có phần ảo Tuy nhiên cách dài cồng kềnh Bài 2: Cho Ta có : Bài 3: Giả sử modun Chứng minh: Xét phương trình: Chứng minh: Hướng dẫn : = Vậy số ảo số ảo phương trình : với có hai nghiệm Hướng dẫn: (1) có nghiệm Ta có : UAN VAN CHAT LUONG download : add luanvanchat@agmail.com đặt : Sử dụng : z số thực Vậy với q với q Bài 4: Cho Chứng minh: số thực Hướng dẫn: Ta có : Tương tự : ,…, (1) Lại có : , tương tự : ,…, (2) Từ (1) (2) 10 UAN VAN CHAT LUONG download : add luanvanchat@agmail.com Vậy A số thực Dạng 4: Chứng minh bất đẳng thức Bài 1: Chứng minh với số phức z, bất đẳng thức sau xảy ra: (1) (2) Hướng dẫn : (1’) (2’) đặt : , , ta xét : (1’) (2’) hay (1) (2) Bài 2: Cho Chứng minh: Hướng dẫn: Giả sử: với Ta có : (1) Lại có : (2) 11 UAN VAN CHAT LUONG download : add luanvanchat@agmail.com + Lấy (1) cộng (2) : Bài 3: Cho (đpcm) Chứng minh: (1) Hướng dẫn : Ta có : (2) (3) (4) Lấy (2) cộng (3) cộng (4) : (5) Lại có : Tương tự : (đpcm) Bài : Cho thỏa mãn : Chứng minh: Hướng dẫn: Ta có : (1) Đặt: (t > 0) (1) trở thành : 12 UAN VAN CHAT LUONG download : add luanvanchat@agmail.com hay Vậy Bài : Cho số phức z, z’ Chứng minh: (1) Hướng dẫn: Gọi A, B, C điểm biểu diễn số phức z, z’, z + z’ Ta có Từ suy Hơn nữa, O, A, C theo thứ tự thẳng hàng Nếu A khơng trùng với O ( hay ) điều có nghĩa có số tức Nếu Vậy để tồn để Kết luận : Bài tập áp dụng: Chøng minh r»ng víi mäi sè phøc z, z’ ta ®Òu cã : a/ b/ c/ Dạng 5: Các dạng tốn khác : Bài 1: Xét phương trình : (b, c , c ) Gọi A, B hai điểm biểu diễn hai nghiệm phương trình Tìm điều kiện b, c để tam giác OAB vuông cân O Hướng dẫn : Gọi hai nghiệm phương trình ( c ) Khi , , biểu diễn số phức 13 UAN VAN CHAT LUONG download : add luanvanchat@agmail.com vuông cân O Từ (1) Từ (2) (2’) Từ (1’) (2’) được: Lại có : Vậy 2b2 = c thỏa mãn Chú ý: Trong tốn ta chứng minh cách đặt , sử dụng đưa hệ phương trình ẩn Tuy nhiên cách chứng minh tương đối phức tạp Bài 2: Cho A, B biểu diễn giác OAB thỏa mãn : Chứng minh tam Ta có : Tương tự có: Từ (1) (2) được: Lại có, thay Từ (1’) (2’) : OA= OB = AB suy tam giác OAB Vậy OAB 2.2 Th ực trạng vấn đề trước áp dụng sáng kiến kinh nghiệm 14 UAN VAN CHAT LUONG download : add luanvanchat@agmail.com Trước triển khai đề tài thưc có khó khăn lúng túng định học sinh giải toán số phức Nhiều học sinh có suy nghĩ bỏ khó số phức không tự tin đạt điểm tối đa nội dung 2.3 Các sáng kiến kinh nghiệm giải pháp sử dụng để giải vấn đ ề Để kiểm chứng đề tài tơi khảo sát số nhóm học sinh có nhiều kết khả quan 2.4 Hiệu sáng kiến Sau cho học sinh học tập theo phương pháp trên, cho lớp gồm 40 học sinh làm kiểm tra 45’với đề sau: Đề : Câu 1: Cho Câu 2: Chứng minh với Tính hai số phức ta có : Câu 3: Chứng minh với số phức ta ln có: Dưới TB SL KẾT LUẬN, KIẾN NGHỊ 3.1 Kết luận Trên số tốn mà tơi nghiên cứu giải phương pháp sử dụng Modun Nó kết thời gian dài nghiên cứu, tìm tòi áp dụng thực tế bước đầu mang lại kết khả quan Trên sở áp dụng phương pháp sử dụng modun cho số dạng toán khác như: Giá trị lớn nhất, giá trị nhỏ 3.2 Kiến nghị Mặc dù thân dành nhiều thời gian nghiên cứu, triển khai Tuy nhiên đề tài nhiều hạn chế Rất mong góp ý đồng nghiệp Tơi xin chân thành cám ơn! 15 UAN VAN CHAT LUONG download : add luanvanchat@agmail.com XÁC NHẬN CỦA HIỆU TRƯỞNG NHÀ TRƯỜNG Thanh Hóa ngày 16 tháng năm 2021 Tơi xin cam đoan sáng kiến kinh nghiệm thân tơi mà q trình cơng tác tơi tích lũy Tơi khơng chép Lê Anh Dũng SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HÓA TRƯỜNG THPT THIỆU HÓA 16 UAN VAN CHAT LUONG download : add luanvanchat@agmail.com SÁNG KIẾN KINH NGHIỆM TIẾP CẬN MỘT SỐ BÀI TỐN KHĨ VỀ SỐ PHỨC BẰNG CÔNG CỤ MODUN Người thực hiện: LÊ ANH DŨNG Chức vụ: Giáo Viên Đơn vị cơng tác:Trường THPT THIỆU HĨA SKKN thuộc lĩnh vực (mơn): Tốn THANH HĨA, NĂM 2021 17 UAN VAN CHAT LUONG download : add luanvanchat@agmail.com ... phức Cho hai số phức z = a + bi z’ = a’ + b’i ( a, b, a’, b’ số thực ) Hai số phức Cộng, trừ hai số phức Số đối số phức z = a + bi số phức - z = - a – bi ; z + (-z) = Nhân hai số phức Modun số. .. tốn trị tuyệt đối Từ suy nghĩ nên chọn đề tài ? ?Tiếp cận số tốn khó số phức công cụ modun? ?? Hy vọng qua học sinh cảm thấy toán “ Số phức? ?? khơng cịn q khó 1.2 Mục đích nghiên cứu Mục đích tơi nghiên... số thực i thỏa mãn i = -1 gọi số phức a gọi phần thực, b gọi phần ảo i gọi đơn vị ảo - Tập số phức kí hiệu C - Số phức có phần ảo gọi số thực nên R C - Số phức có phần thực gọi số ảo 2.Hai số

Ngày đăng: 28/11/2022, 15:52

w