KHOA HQC - CONG NGHt: Q XAY DIMG PHAN M I M D A N H I A D O TIN CAY H i T H N G NGUdN DIEN SUf DUNG MO P H O N G MONTE-CARLO Tran Ky Phuc, Vu Toan Thang Le Thj Thanh Ha Vien Ndng lugng TrUdng Dgi hgc Bdeh Khoa Hd Ngi TOM T A T Danh gia dp tin cay he thong dien noi chung va he thong nguon dien noi rieng dong vai tro quan trpng quy hoach, thiet ke cung nhu van hanh Bai bao gidi thieu cac phucmg phap danh gia dp tin cay va pham vi ap dung cua chung Tren co so phan tich so sanh, phuong phap mo phong Monte-Carlo dupc lua ehpn nham xay dung phan mem tinh toan cac chi so tin cay nhu LOLP, LOLE, EUE Phan mem dupc thii nghiem tren cac so lieu he thong dien gia lap SMALL va lEEE-RTS cho thay ket qua phu hpp vdi cac phuong phap khac, tu ap dung tinh toan cho he thong dien thuc te cua Viet Nam Luu y rang, bp phat so ngau nhien dong vai tro quan trpng phuong phap mo phong Monte-Carlo I GlOfI THIEU Od tin cly he thdng dien la k h i nang hay xle suit dap flng nhu cau phu t l i khoing thdi gian nhat dinh va dieu kien van hanh nhat dinh Van hanh he thdng dien Viet Nam nhflng nam gan day gap nhieu khd khan ap lUc cung cap dien d n g Idn cho sU nghiep cdng nghiep hda hien dai hda dat nUdc Tdc dp t i n g trfldng nhu cau dien giai doan 2006 - 2010 la 13,9%/nlm Trong dd tong cdng suit dUa vao van hanh nam 2006 - 2010 la 9923 MW, ehi dat 68,0% so vdi 14.581 MW theo Quylt djnh phd duyet Tong so dd phat trien didn VI (TSO) Mdt sd dflan v l ngudn dien Idn nhfl QuIng Ninh (600 MW), HIi Phdng (600 MW), Cam Phi (300 MW), Sdn Odng (220 MW) mdi dfla v i o van hinh khdng on djnh, ehi ddng gdp dflpc mdt sin Iflpng rat it eho he thdng [1] Trong dilu kidn dd, vide dinh gii dp tin cay he thdng dien cd y nghia vd cung quan trpng Mat khac, den d Viet Nam hau nhUehUacdcdng cu tinh toan dp tin cay phu hpp nao Quae Qua vao sfl dung Muc dich cua danh gia dp tin cay he thdng dien mfle cau true la danh gia xac suat ngudn dien cua he thdng d i p flng phu t l i dien giai doan xem xet, vi vay nd cdn Quae gpi la dp dap flng phu t l i cua he thdng ngudn dien hole gpi tat la dp tin cay cua he thdng ngudn dien Ve phUdng phap, cac phUdng pblp phd bien hien dung dinh g i i dp tin cay HTO deu cd diem manh va diem yeu rieng PhUdng phip thj-giai tich phu hdp vdi cac HTO cd eau true ddn giln va die biet hieu q u i ddi vdi cle he thdng khdng phuc hdi [2] song gap nhieu khd khin tinh t o i n dang tri cle phan tfl eua he thdng cd cau true phfle tap cung nhU khdng xet dupe q u i trang t h i i cua phan tfl Uu the cua phfldng phap khdng gian trang thai la xet Quae nhieu trang thai cua phan tfl, tinh dUpc xac suit va tan suat trang thai Song nd ddi hdi khdi lupng tinh toan Idn va thUdng chi dung cho cac HTO nhd va vfla PhUdng phap cay hdng hdc phu hpp cho cac phan tich can cho thay nhflng hdng hdc va cac diem yeu nhat cua HTO Tuy nhien, vide lap cly hdng hdc eung ddi hdi nhilu thdi gian phan tich, die biet ddi vdi chflc nang, cau tao cle phan tfl he thdng va I n h hfldng cua chflng den xac suit hdng hdc Phfldng phap md phdng MonteCarlo [2-4] cd nhieu Uu diem nhU de sfl dung, cd the ap dung cho cle he thdng rat phfle tap ma elc phfldng pblp khac khdng hieu qua; trudng hpp cac thdng sd dp tin cay la bat djnh, tfle la b i l n thien mdt mien nao dd vdi ham phan bd cho trflde, thi md phdng Monte-Carlo la phfldng phap nhat khdng the Dien & Ddfi song 19 E] KHOA HQC - CONG NGHf: thay t h i ; tinh dflpc phin bd xle suit cua ele ehi tidu dp tin cly, elc phUdng p b l p gill tich chi tinh dflpc g i i trj trung binh eua ehung; tinh Quae Inh hfldng cua elc hoat ddng van hanh d i n dp tin ely cua he thdng; tinh dflpc I n h hfldng efla dieu kien thuy v i n (ehl dp nude cua cle hd chfla) d i n dp tin cly Nhflpc diem efla phUdng p b l p - khdi lUpng tinh toan Idn - Quae khac phuc cang tdt nhd k h i ning xfl ly vdi tdc dp cao cua ele may tinh manh hien Vi vay, bai b l o sfl dung phUdng p b l p MonteCarlo (M-C) de xay dUng thuat t o i n va phan mem danh gia dp tin cay HTO ap dung cho dieu kien nUdc ta II cAc CHi s D d TIN TH6NGNGU5NDI|N CAY H E Trong cleh t i l p can truyin thdng, thfldng tin cay he thdng ngudn didn Quae d i n h g i i thdng qua he sd dfl trfl ngudn RM [3] RM=(G.-L )/L 100% A p (1) p vdi G^ - tong cdng suit p h i t k h i dung cua he thdng; L - phu t l i dinh cua nam xem xet Vdi elch t i l p can xle suit [26], ngfldi ta sfl dung chi sd xac suat thieu cong suat LOLP (hay edn gpi la xac suat mat tai - loss of load probability) Xac suat t h i l u cdng suit LOLP tinh bang xac suit x i y trang thai tong edng suit p h i t cua ngudn dien G nhd hdn phu t l i efla he thdng L, ky hidu II Pr{G