1. Trang chủ
  2. » Giáo Dục - Đào Tạo

(SKKN HAY NHẤT) một số GIẢI TÍNH CHẤT các điểm cực TRỊ của đồ THỊ hàm số bặc 4 và ỨNG DỤNG PHÁT TRIỂN NĂNG lực tư DUY SÁNG tạo CHO học SINH THÔNG QUA VIỆC KHAI THÁC bài TOÁN hàm ẩn TRONG đề THI TNTHPTQG

23 9 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 23
Dung lượng 680,01 KB

Nội dung

SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HOÁ TRƯỜNG THPT HÀM RỒNG SÁNG KIẾN KINH NGHIỆM PHÁT TRIỂN TƯ DUY SÁNG TẠO CHO HỌC SINH THÔNG QUA VIỆC KHAI THÁC BÀI TOÁN HÀM ẨN TRONG ĐỀ THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com MỞ ĐẦU 1.1 Lí chọn đề tài Đối với giáo viên chúng ta, giảng dạy luôn đặt mục tiêu nâng cao chất lượng giáo dục, lực, tri thức, nhận thức học sinh Đặt mục tiêu để tri thức học sinh rèn luyện cách tốt Tôi nhận thấy rèn luyện tư duy, kĩ giải toán, làm việc sáng tạo việc cần thiết, quan trọng để đáp ứng nhu cầu học sinh trách nhiệm người giáo viên giảng dạy Qua kì thi THPT quốc gia đề thi thử năm gần xuất nhiều toán yêu cầu học sinh biết liên hệ nhiều kiến thức, có tốn địi hỏi tư duy, khả liên hệ, kết hợp kiến thức, lực mức độ cao Một tốn có nhiều liên quan đến hàm hợp Đây phần toán đề thi có đầy đủ mức độ từ nhận biết, thông hiểu, vận dụng thấp, vận dụng cao; có nhiều vấn đề liên quan đạo hàm hàm số, tốn tính đơn điệu, cực trị hàm số, toán tương giao, tốn phương trình, phương trình chứa tham số, toán đường tiệm cận, nguyên hàm, … Từ vấn đề nêu trên, thật trăn trở để giúp học sinh giải toán cách nhanh xác; rèn luyện tư duy, nâng cao lực cho học sinh, liên hệ kiến thức viết sáng kiến kinh nghiệm “Phát triển tư sáng tạo cho học sinh thông qua việc khai thác toán hàm ẩn đề thi tốt nghiệp Trung Học Phổ Thơng’’ 1.2 Mục đích sáng kiến Trên nghiên cứu lý thuyết thực tiễn, đề xuất số cách khai thác phát triển dạng tập toán từ số tốn gốc, nhằm góp phần đổi phương pháp dạy học, nâng cao kiến thức lực học sinh 1.3 Đối tượng, phạm vi nghiên cứu - Học sinh lớp 12, học sinh ôn thi THPT - Giáo viên giảng dạy mơn Tốn bậc THPT 1.4 Phương pháp nghiên cứu Phương pháp nghiên cứu lí thuyết Phương pháp thống kê Phương pháp tham vấn Phương pháp tổ chức hoạt động nhóm NỘI DUNG NGHIÊN CỨU Hầu hết giáo viên giảng dạy quan niệm nhẹ nhàng học sinh làm kết quả, đáp án mà lãng quên chất, nguyên nhân xuất phát toán từ đâu, đánh kết hợp liên quan LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com yếu tố, kiến thức, với đề thi chủ yếu đánh giá lực hình thức trắc nghiệm Nếu truyền thụ kiến thức cho học sinh mà bỏ qua hoạt động rèn luyện tư duy, kết hợp kiến thức, liên hệ phát triển khơng thân bị mai kiến thức, mà em học sinh bị động trước vấn đề “tưởng chừng mẻ” toán học, khả suy luận, tư sáng tạo học sinh bị hạn chế 2.1 Cơ sở lí luận sáng kiến kinh nghiệm 2.1.1 Lí thuyết cần tìm hiểu : - Hàm số hợp đạo hàm hàm số hợp - Các ứng dụng đạo hàm: i Tính đơn điệu hàm số ii Cực rị hàm số iii Tương giao đồ thị hàm số 2.1.2 Nghiên cứu phương pháp phát triển toán liên quan Các định hướng xây dựng toán xuất phát từ toán gốc Bài toán gốc: Cho hàm số Tính đơn điêu hàm số Cực trị hàm số Tương giao: m ph Nghiệ Ở xây dựng đa thức ẩn x, biểu thức thức chứa x, logarit, mũ chứa x, biểu thức lượng giác 2.2 Cơ sở thực tiễn Thực trạng việc tổ chức dạy học chủ đề gắn với việc giáo dục ý thức trách nhiệm học sinh Hứng thú học tập học sinh việc tự tìm hiểu, sáng tạo, khám phá tập 2.3 Giải pháp phát triển tư duy, lực học sinh thơng qua hoạt động hình thành, phát triển toán hàm ẩn từ toán gốc 2.3.1 Định hướng xây dựng toán xuất phát từ toán gốc hàm số Bài toán gốc: Cho hàm số Tính đơn điêu hàm số Cực trị hàm số Tương giao: Nghphư LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Ở xây dựng đa thức ẩn x, biểu thức thức chứa x, logarit, mũ chứa x, biểu thức lượng giác, biểu thức chứa tham số 2.3.2 Thiết kế hoạt động định hướng phát triển toán xuất phát từ toán gốc +) Định hướng phát triển toán đơn điệu +) Định hướng phát triển toán cực trị +) Định hướng phát triển toán tương giao a) Xây dựng toán đơn điệu dựa toán gốc *Bài toán gốc Cho hàm số Mệnh đề đúng? A Hàm số nghịch biến khoảng B Hàm số đồng biến khoảng C Hàm số đồng biến khoảng D Hàm số nghịch biến khoảng ( Câu 21 mã đề 104 đề thi THPTQG năm 2017) Lời giải Tập xác định , ta có Vậy hàm số đồng biến khoảng Chọn đáp án B Ta đánh giá toán mức vận dụng thấp, để nhằm giải tốn dạng học sinh cần nắm vững đạo hàm hàm hợp, đồng thời nắm vững cách xét dấu làm Đặt vấn đề phát triển toán tương tự, định hướng cho học sinh thay biểu thức bậc hai đa thức bậc nhất, bậc hai, bậc ba khác Chẳng hạn thay biểu thức Với biểu thức bậc thay vào toán gốc ta lớp toán mức độ thơng hiểu, ví dụ sau Bài Cho hàm số Mệnh đề đúng ? A Hàm số đồng biến đạn B Hàm số đồng biến khoảng C Hàm số nghịch biến khoảng LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com D Hàm số nghịch biến khoảng Giải Tập xác định, ta có với Vậy hàm số đồng biến khoảng Với biểu thức bậc hai, bậc ba thay vào toán gốc ta lớp toán mức độ nhận biết tương đương toán gốc Bài Cho hàm số Mệnh đề đúng? A Hàm số đồng biến đạn B Hàm số đồng biến khoảng C Hàm số nghịch biến khoảng D Hàm số nghịch biến khoảng Giải Tập xác định Ta có Vậy hàm số nghịch biến khoảng Đáp án C Bài Cho hàm số Mệnh đề đúng? A Hàm số đồng biến khoảng B Hàm số đồng biến khoảng C Hàm số nghịch biến khoảng D Hàm số nghịch biến khoảng Đáp án A Bài Cho hàm số Mệnh đề đúng? A Hàm số đồng biến khoảng B Hàm số đồng biến khoảng C Hàm số nghịch biến khoảng D Hàm số nghịch biến khoảng LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Đáp án B Khi kết hợp biểu thức dạng có chứa tham số thay vào tốn gốc thu lớp toán mức vận dụng, tổ chức thực có nhiều em sáng tạo nhiều toán hay Bài Cho hàm số Tập tất giá trị tham số biến khoảng xác định là? A B C để hàm số đồng D Giải Ta có Khi ta có Khi ta có nên khơng thỏa mãn u cầu toán hàm số đồng biến khoảng xác định, nên thỏa mãn yêu cầu toán Khi ta có mãn tốn Đáp án A hàm số nghịch biến nên không thỏa Bài Cho hàm số Tập tất giá trị tham số hàm số đồng biến khoảng A để B C D Giải Điều kiện xác định hàm số Ta có : Hàm số cho đồng biến khoảng Đáp án D *Bài toán gốc Cho hàm số Hàm số A bảng xét dấu hàm số sau nghịch biến khoảng đây? B C D LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Giải Dựa vào bảng biến thiên ta có hàm số nghịch biến khoảng Đáp án C Thực phát triển toán cách tương tự toán gốc 1, ta thu số dạng toán Bài Cho hàm số Hàm số A xác định có bảng xét dấu hàm số sau nghịch biến khoảng đây? B C D Giải Ta có Vậy hàm số nghịch biến khoảng Chọn đáp án B Bài Cho hàm số Hàm số A xác định có bảng xét dấu hàm số sau: đồng biến khoảng đây? B C D Giải Ta có đồng biến Vậy hàm số Chọn đáp án D Bài Cho hàm số xác định có bảng xét dấu hàm số sau LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Hàm số nghịch biến khoảng đây? A B C D Giải Đáp án A Vậy hàm số đồng biến Bài Cho hàm số Hàm số A Đáp án B A có bảng xét dấu hàm số sau đồng biến khoảng đây? B Bài Cho hàm số Hàm số xác định C xác định D có bảng xét dấu hàm số sau đồng biến khoảng đây? B C D Giải Tập xác định Ta có LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Kết hợp tập xác định ta có Bài Cho hàm số hàm số đồng biến xác định Chọn đáp án D có bảng xét dấu hàm số Tập tất giá trị m để hàm số sau đồng biến khoảng A Đáp án B Bài Cho hàm số B C xác định D có bảng xét dấu hàm số Số giá trị m nguyên để hàm số A Đáp án C Bài Cho hàm số sau đồng biến khoảng B C xác định Tập giá trị m nguyên để hàm số D có bảng xét dấu hàm số đồng biến khoảng sau A B C D Đáp án C b) Xây dựng toán cực trị dựa toán gốc Bài toán gốc Cho hàm số hàm số liên tục có bảng biến thiên sau Số điểm cực trị hàm số LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com A B C D Giải Dựa vào bảng ta có hàm số có cực trị Đáp án C Chúng ta cỏ thể định hướng mẫu cho học sinh phát triển thành toán sau từ tốn gốc Tìm số điểm cực trị hàm số thức , lưu ý biểu không cho cách tùy ý nhiều không giải số nghiệm phương trình =a Bài Cho hàm số liên tục có bảng biến thiên hàm số sau Số điểm cực trị hàm số A là: B C D Giải Xét hàm số Vậy chứng tỏ phương trình ta có có nghiệm đơn phân biệt, suy hàm số có điểm cực trị Đáp án A Khi thay biểu thức thi kì thi THPTQG năm 2019 Bài Cho hàm số liên tục thu tốn có bảng biến thiên hàm số sau: 10 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Số điểm cực trị hàm số B B C D Lời giải Từ bảng biến thiên ta có phương trình Xét hàm số Do có nghiệm ta có suy ta có: Phương trình với Phương trình với Phương trình vơ nghiệm; có hai nghiệm phân biệt khác với nghiệm phương trình Phương trình Vậy phương trình có hai nghiệm phân biệt khác khác ; với nghiệm phương trình ; có hai nghiệm phân biệt khác khác có nghiệm phân biệt qua gia trị nghiệm đổi dấu nên hàm số có điểm cực trị Đáp án C Đây toán địi hỏi người làm cần có lực toán học tốt, biết kết hợp, vận dụng nhiều kiến thức liên quan đạo hàm hàm hợp, kĩ đọc bảng biến thiên, kĩ giải biện luận số nghiệm phương trình Sau tơi xin trình bày lời giải chi tiết Bài Cho hàm số liên tục có bảng biến thiên hàm số sau : 11 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Số điểm cực trị hàm số A B là : C Lời giải Từ bảng biến thiên ta có phương trình Xét hàm số Do D có nghiệm ta có suy ta có: Các phương trình Phương trình với có nghiệm Phương trình với có nghiệm Vậy phương trình đổi dấu nên hàm số Đáp án C Bài Cho hàm số vô nghiệm; có nghiệm lẻ phân biệt qua giá trị nghiệm có điểm cực trị liên tục có bảng biến thiên hàm số sau : Số điểm cực trị hàm số A B C Lời giải D 12 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Từ bảng biến thiên ta có phương trình có nghiệm Xét hàm số ta có suy ta có: Các phương trình vơ nghiệm; Do Phương trình với có nghiệm Vậy phương trình có nghiệm lẻ phân biệt nên hàm số điểm cực trị Chọn đáp án C Bài Cho hàm số bảng biến thiên hàm số Tìm số điểm cực trị hàm số Bài Cho hàm số Số điểm cực trị hàm số A B có sau : bảng biến thiên hàm số sau C D Lời giải Ta có 13 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Dựa vào đồ thị hàm số suy phương trình có nghiệm đơn Suy hàm số có điểm cực trị Đáp án A c) Xây dựng toán tương giao dựa toán gốc Với định hướng tương tự trên, đưa toán gốc tương giao đồ thị, hay tốn tìm số nghiệm phương trình đê em phát triển tốn tương tự toán nâng cao lên mức độ khó *Bài tốn gốc Cho hàm số bậc ba: y có đồ thị hình vẽ -1 -1 Số nghiệm thực phương trình A B x C D Giải Số giao điểm đồ thị hàm số nghiệm phương trình Đáp án A với đường thẳng nên số Ta cỏ thể định hướng cho học sinh phát triển cách x vận dụng phép biến đổi đồ thị, kết hợp hai để tạo toán Bài Cho hàm số bậc ba có đồ thị hình vẽ y -1 -1 x Số nghiệm thực phương trình A C B D Giải 14 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Từ đồ thị ta có Suy phương trình có hai nghiệm phân biệt Đáp án B Bài Cho hàm số bậc ba: có đồ thị hình vẽ y -1 -1 x Số nghiệm thực dương phương trình: A B C D Từ đồ thị ta có Phương trình (1) có nên phương trình có nghiệm phân biệt dương Các phương trình (2); (3) phương trình có hai nghiệm trái dấu Vậy phương trình cho có nghiệm dương Đáp án D Bài Cho hàm số bậc ba: có đồ thị hình vẽ Số nghiệm thực phương trình: là: y -1 -1 x 15 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com A B C D Lời giải Ta có Bảng biến thiên hàm số : + - + Từ đó, ta có: Phương trình có nghiệm phân biệt Phương trình có nghiệm phân biệt Phương trình có nghiệm Phương trình có nghiệm Vậy phương trình có nghiệm phân biệt Đáp án A 2.3.3 Tổ chức thực đề tài Thực phạm vi số buổi chữa tập buổi học chuyên đề Thầy giáo đưa số ví dụ cách xây dựng toán từ toán bản, sau hướng dẫn học sinh tự tìm tòi phát số vấn đề xung quanh Hình thức giáo viên giao nhiệm vụ, học sinh nghiên cứu toán với hướng dẫn giáo viên Tiết Hoạt động giáo viên Nêu mục tiêu ý tưởng đề tài Hoạt động học sinh Quan sát, ý lắng nghe 16 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Đưa toán gốc ( Bài toán gốc 1) Quan sát, thảo luận số ví dụ tốn ( Các 1, 3, 5) Thực nhiệm vụ giáo viên phát triển, cho học Trình bày báo cáo sinh giải tốn gốc tốn Nhận xét báo cáo bạn Cho học sinh phát triển giải Thực nhiệm vụ tốn lớp tốn gốc đưa Trình bày báo cáo Nhận xét báo cáo bạn Phân công nhiệm vụ nhà Chia lớp thành nhóm Cử em: Thư, Trang, Đạt làm nhóm trưởng nhóm 1, 2, Giao nhiệm vụ phát triển tốn cho nhóm Nhóm Phát triển tốn tính đơn điệu hàm số ( Bài tốn gốc phần đơn điệu) Nhóm 2: Phát triển toán cực trị ( Bài toán gốc phần cực trị) Nhóm 3: Phát triển tốn tương giao ( Bài toán gốc phần tương giao) Phân chia nhóm theo phân cơng giáo viên Các thành viên nhóm phân cơng phát triển tốn mức độ thơng hiểu, vận dụng thấp, vận dụng cao Nhóm trưởng nhóm tổng hợp thành viên tổ cử thành viên báo cáo Tiết 2-3 Hoạt động giáo viên Hoạt động học sinh Tổ chức cho đại diện nhóm báo cáo Chú ý, quan sát thực nhiệm Cho thành viên nhóm tự vụ nhận xét nhóm ( Nội dung, mức độ hợp tác, khối lượng hồn thành cơng việc thành viên) Cho nhóm nhận xét chéo Giáo viên tổng hợp đánh giá, nhận xét cho nhóm 2.4 Hiệu sáng kiến kinh nghiệm 2.4.1 Đánh giá phẩm chất lực - Số lượng học sinh khảo sát: 50 em Tơi học kiến thức gì? Hiểu biết nội dung kiến thức có liên quan tới dự án: 50 em 17 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Tôi phát triển kĩ gì? Làm việc, học tập theo nhóm/tập thể: 50 em Làm việc tư độc lập, hoạt động cá nhân: 47 em Thuyết trình: em Học cách lắng nghe, tôn trọng ý kiến khác: em Giao tiếp tốt: 12 em Bình tĩnh giải vấn đề: 10 em Tìm kiếm, chọn lọc liệu, xử lí thơng tin: 20 em Tơi xây dựng thái độ tích cực? Vui vẻ hồ đồng, hăng say tích cực làm việc: 30 em Cẩn thận: em Kiên nhẫn: em Làm việc nghiêm túc: 35 em Đồn kết: 50 em Tơn trọng ý kiến khác: 15 em Biết bảo vệ ý kiến cá nhân: em Tự tin: em Tích cực học hỏi: 15 em Tinh thần đóng góp, phối hợp: 30 em Tự giác hồn thành cơng việc: 25 em Chia sẻ ý kiến thảo luận: 30 em Có trách nhiệm: 36 em Tơi có hài lịng với kết nghiên cứu dự án khơng? Vì sao? Hài lịng, nhóm làm việc cố gắng hết mình: 25 em Hài lịng, nhóm đồn kết làm việc: 30 em Hài lòng, kết sản phẩm dự án tốt, tăng vốn kiến thức: em Tương đối hài lịng, cịn số sai sót khơng ý: 25 em Tơi gặp phải khó khăn Tơi giải khó thực dự án? khăn nào? Thu thập chọn lọc thơng tin khó Hỗ trợ tư vấn cho em khăn: 20 em Phân cơng cơng việc: em nhận - Cùng nhóm giải nhiệm vụ làm nhóm trưởng - Tìm mạng: 15 em 18 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com - Hỏi phụ huynh: em - Hỏi giáo viên: 15 em Quan hệ với thành viên nhóm nào? Bình thường: em Tốt: 30 em Khá tốt: 10 em Rất tốt: em Hoà đồng, thân thiện: tất em Nhìn chung, tơi thích/ khơng thích dự án vì… Thích, hay thiết thực, gắn liền với thực tiễn: 20 em Thích, phát khả mình/thể khả năng: em Thích, có hội học thêm kiến thức kĩ làm việc nhóm: 10 em Thích, trải nghiệm cảm giác làm việc thực sự: 20 em Thích, cá nhân u thích mơn học: 20 em Thích, luyện khả tự tìm hiểu, sáng tạo: em Thích, tìm hiểu thêm kiến thức tốn học: 12 em Thích, cách học thú vị mẻ: 25 em Thích, đem lại nhiều lợi ích: 10 em Mức độ hứng thú tơi với phương pháp dạy học theo dự án (5 cấp độ): (1: Rất khơng thích; 2: Khơng thích; Bình thường; 4: Thích; 5: Rất thích) Rất thích Thích Bình thường Khơng thích Rất khơng thích Tổng: Nhóm 10 0 16 Nhóm 11 0 17 Nhóm Tỉ lệ 34% 60% 6% 0 0 17 100% 2.4.2 Khả ứng dụng, triển khai sáng kiến kinh nghiệm Nhận xét: - Thống kê cho thấy việc định hướng cho em phát triển toán dựa vào toán gốc thu kết quả: + Các nhóm em hồn thành tốt nhiệm vụ, em tham gia tích cực, chủ động sáng tạo công viêc 19 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com + Phương pháp định hướng phát triển tốn cho kết trung bình tương đối tốt, điều phần chứng tỏ khả lớn để áp dụng phương pháp vào thực tế dạy học + Học sinh phát huy cao tính chủ động, sáng tạo, giao tiếp hợp tác việc giải vấn đề liên quan + Học sinh chủ động thu thập tài liệu, tích lũy kiến thức phối hợp với hoạt động nhóm để tạo sản phẩm, kiến thức ghi nhớ tốt, đồng thời phát triển kỹ tìm kiếm tài liệu khai thác tốt nguồn thơng tin Vì vậy, tơi khẳng định đề tài có khả ứng dụng, triển khai thực tế dạy học Không với chủ đề hàm số mà áp dụng cho nhiều chủ đề khác toán học KẾT LUẬN VÀ KIẾN NGHỊ 3.1 Kết luận Như điều cốt lõi đề tài thông qua toán chủ đề hàm hợp phát triển hệ thống tư duy, phân tích, kết hợp, suy luận logic, kích thích tính sáng tạo cho học sinh Chủ đề ứng dụng rộng rãi với việc nhìn tốn nhiều góc độ khác cách biến đổi điều kiện biến số mở lớp toán hay đẹp ứng dụng nhiều kỳ thi kỳ thi THPTQG 3.2 Kiến nghị Trong q trình dạy học thói quen biết phân tích, tổng hợp, khái quát hóa, đặc biệt hóa để đào sâu nghiên cứu góc cạnh tốn học kiểu điều cần thiết cho phát triển tư kích thích tính tích cực khám phá em học sinh.Việc sử dụng hệ thống toán cho ta cách giải tập liên quan cách đơn giản tiếp tục sáng tạo khai thác sâu chắn ta tìm nhiều vấn đề thú vị mà chưa làm đề tài phạm vi Tôi tiếp tục nghiên cứu, bổ sung kiến thức đề tài mong đón nhận góp ý bổ ích Q vị Giám khảo bạn bè đồng nghiệp để đề tài phong phú chất lượng hữu ích 20 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Tôi xin chân thành cảm ơn ! XÁC NHẬN CỦA THỦ TRƯỞNG ĐƠN VỊ Thanh Hóa, ngày 02 tháng năm 2021 Tôi xin cam đoan sáng kiến kinh nghiệm tôi, không chép nội dung người khác Người viết sáng kiến Gv: Trịnh Hữu Đại Tài liệu tham khảo [1] Các thi THPTQG Việt nam [2] Bộ đề thi thử môn Toán THPTQG 21 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com DANH MỤC SÁNG KIẾN KINH NGHIỆM ĐÃ ĐƯỢC HỘI ĐỒNG SÁNG KIẾN KINH NGHIỆM CẤP NGÀNH GIÁO DỤC TỈNH XẾP LOẠI TỪ C TRỞ LÊN TT Tên đề tài SKKN Cấp đánh giá Kết đánh Năm học xếp loại giá xếp loại (Cấp Tỉnh) Sử dụng tính đơn điệu Ngành giáo dục hàm số giải PT, cấp tỉnh B 2013 22 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com BPT, HPT, HBPT Xây dựng cơng thức, Ngành giáo dục tốn hình học từ cơng cấp tỉnh thức tốn biết Phát triển tư sáng tạo Ngành giáo dục cho học sinh thông qua cấp tỉnh việc khai thác tốn hình học B 2015 B 2018 23 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ... cực trị Chọn đáp án C Bài Cho hàm số bảng biến thi? ?n hàm số Tìm số điểm cực trị hàm số Bài Cho hàm số Số điểm cực trị hàm số A B có sau : bảng biến thi? ?n hàm số sau C D Lời giải Ta có 13 LUAN VAN... động hình thành, phát triển toán hàm ẩn từ toán gốc 2.3.1 Định hướng xây dựng toán xuất phát từ toán gốc hàm số Bài toán gốc: Cho hàm số Tính đơn điêu hàm số Cực trị hàm số Tư? ?ng giao: Nghphư... sáng tạo cho học sinh thông qua việc khai thác toán hàm ẩn đề thi tốt nghiệp Trung Học Phổ Thơng’’ 1.2 Mục đích sáng kiến Trên nghiên cứu lý thuyết thực tiễn, đề xuất số cách khai thác phát triển

Ngày đăng: 28/11/2022, 14:28

HÌNH ẢNH LIÊN QUAN

2.3. Giải pháp phát triển tư duy, năng lực học sinh thơng qua hoạt động hình thành, phát triển các bài toán hàm ẩn từ những bài toán gốc.thành, phát triển các bài toán hàm ẩn từ những bài toán gốc. - (SKKN HAY NHẤT) một số GIẢI TÍNH CHẤT các điểm cực TRỊ của đồ THỊ hàm số bặc 4 và ỨNG DỤNG PHÁT TRIỂN NĂNG lực tư DUY SÁNG tạo CHO học SINH THÔNG QUA VIỆC KHAI THÁC bài TOÁN hàm ẩn TRONG đề THI TNTHPTQG
2.3. Giải pháp phát triển tư duy, năng lực học sinh thơng qua hoạt động hình thành, phát triển các bài toán hàm ẩn từ những bài toán gốc.thành, phát triển các bài toán hàm ẩn từ những bài toán gốc (Trang 3)
2.1 Cơ sở lí luận của sáng kiến kinh nghiệm. 2.1.1. Lí thuyết cần tìm hiểu : - (SKKN HAY NHẤT) một số GIẢI TÍNH CHẤT các điểm cực TRỊ của đồ THỊ hàm số bặc 4 và ỨNG DỤNG PHÁT TRIỂN NĂNG lực tư DUY SÁNG tạo CHO học SINH THÔNG QUA VIỆC KHAI THÁC bài TOÁN hàm ẩn TRONG đề THI TNTHPTQG
2.1 Cơ sở lí luận của sáng kiến kinh nghiệm. 2.1.1. Lí thuyết cần tìm hiểu : (Trang 3)
*Bài toán gốc 2. Cho hàm số bảng xét dấu hàm số như sau. - (SKKN HAY NHẤT) một số GIẢI TÍNH CHẤT các điểm cực TRỊ của đồ THỊ hàm số bặc 4 và ỨNG DỤNG PHÁT TRIỂN NĂNG lực tư DUY SÁNG tạo CHO học SINH THÔNG QUA VIỆC KHAI THÁC bài TOÁN hàm ẩn TRONG đề THI TNTHPTQG
i toán gốc 2. Cho hàm số bảng xét dấu hàm số như sau (Trang 6)
Dựa vào bảng biến thiên ta có hàm số nghịch biến trên các khoảng - (SKKN HAY NHẤT) một số GIẢI TÍNH CHẤT các điểm cực TRỊ của đồ THỊ hàm số bặc 4 và ỨNG DỤNG PHÁT TRIỂN NĂNG lực tư DUY SÁNG tạo CHO học SINH THÔNG QUA VIỆC KHAI THÁC bài TOÁN hàm ẩn TRONG đề THI TNTHPTQG
a vào bảng biến thiên ta có hàm số nghịch biến trên các khoảng (Trang 7)
Bài 4. Cho hàm số xác định trên có bảng xét dấu hàm số như sau - (SKKN HAY NHẤT) một số GIẢI TÍNH CHẤT các điểm cực TRỊ của đồ THỊ hàm số bặc 4 và ỨNG DỤNG PHÁT TRIỂN NĂNG lực tư DUY SÁNG tạo CHO học SINH THÔNG QUA VIỆC KHAI THÁC bài TOÁN hàm ẩn TRONG đề THI TNTHPTQG
i 4. Cho hàm số xác định trên có bảng xét dấu hàm số như sau (Trang 8)
Dựa vào bảng trên ta có hàm số có 3 cực trị - (SKKN HAY NHẤT) một số GIẢI TÍNH CHẤT các điểm cực TRỊ của đồ THỊ hàm số bặc 4 và ỨNG DỤNG PHÁT TRIỂN NĂNG lực tư DUY SÁNG tạo CHO học SINH THÔNG QUA VIỆC KHAI THÁC bài TOÁN hàm ẩn TRONG đề THI TNTHPTQG
a vào bảng trên ta có hàm số có 3 cực trị (Trang 10)
Bài 1. Cho hàm số liên tục trên và có bảng biến thiên của hàm số  như sau - (SKKN HAY NHẤT) một số GIẢI TÍNH CHẤT các điểm cực TRỊ của đồ THỊ hàm số bặc 4 và ỨNG DỤNG PHÁT TRIỂN NĂNG lực tư DUY SÁNG tạo CHO học SINH THÔNG QUA VIỆC KHAI THÁC bài TOÁN hàm ẩn TRONG đề THI TNTHPTQG
i 1. Cho hàm số liên tục trên và có bảng biến thiên của hàm số như sau (Trang 10)
Từ bảng biến thiên ta có phương trình có các nghiệm là - (SKKN HAY NHẤT) một số GIẢI TÍNH CHẤT các điểm cực TRỊ của đồ THỊ hàm số bặc 4 và ỨNG DỤNG PHÁT TRIỂN NĂNG lực tư DUY SÁNG tạo CHO học SINH THÔNG QUA VIỆC KHAI THÁC bài TOÁN hàm ẩn TRONG đề THI TNTHPTQG
b ảng biến thiên ta có phương trình có các nghiệm là (Trang 11)
Bài 5. Cho hàm số bảng biến thiên của hàm số như sau: - (SKKN HAY NHẤT) một số GIẢI TÍNH CHẤT các điểm cực TRỊ của đồ THỊ hàm số bặc 4 và ỨNG DỤNG PHÁT TRIỂN NĂNG lực tư DUY SÁNG tạo CHO học SINH THÔNG QUA VIỆC KHAI THÁC bài TOÁN hàm ẩn TRONG đề THI TNTHPTQG
i 5. Cho hàm số bảng biến thiên của hàm số như sau: (Trang 13)
*Bài tốn gốc. Cho hàm số bậc ba: có đồ thị như hình vẽ dưới đây.                                                    y - (SKKN HAY NHẤT) một số GIẢI TÍNH CHẤT các điểm cực TRỊ của đồ THỊ hàm số bặc 4 và ỨNG DỤNG PHÁT TRIỂN NĂNG lực tư DUY SÁNG tạo CHO học SINH THÔNG QUA VIỆC KHAI THÁC bài TOÁN hàm ẩn TRONG đề THI TNTHPTQG
i tốn gốc. Cho hàm số bậc ba: có đồ thị như hình vẽ dưới đây. y (Trang 14)
Bài 1. Cho hàm số bậc ba có đồ thị như hình vẽ dưới đây. - (SKKN HAY NHẤT) một số GIẢI TÍNH CHẤT các điểm cực TRỊ của đồ THỊ hàm số bặc 4 và ỨNG DỤNG PHÁT TRIỂN NĂNG lực tư DUY SÁNG tạo CHO học SINH THÔNG QUA VIỆC KHAI THÁC bài TOÁN hàm ẩn TRONG đề THI TNTHPTQG
i 1. Cho hàm số bậc ba có đồ thị như hình vẽ dưới đây (Trang 14)
Bài 2. Cho hàm số bậc ba: có đồ thị như hình vẽ dưới đây. - (SKKN HAY NHẤT) một số GIẢI TÍNH CHẤT các điểm cực TRỊ của đồ THỊ hàm số bặc 4 và ỨNG DỤNG PHÁT TRIỂN NĂNG lực tư DUY SÁNG tạo CHO học SINH THÔNG QUA VIỆC KHAI THÁC bài TOÁN hàm ẩn TRONG đề THI TNTHPTQG
i 2. Cho hàm số bậc ba: có đồ thị như hình vẽ dưới đây (Trang 15)
Bảng biến thiên hàm số : - (SKKN HAY NHẤT) một số GIẢI TÍNH CHẤT các điểm cực TRỊ của đồ THỊ hàm số bặc 4 và ỨNG DỤNG PHÁT TRIỂN NĂNG lực tư DUY SÁNG tạo CHO học SINH THÔNG QUA VIỆC KHAI THÁC bài TOÁN hàm ẩn TRONG đề THI TNTHPTQG
Bảng bi ến thiên hàm số : (Trang 16)

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w