1. Trang chủ
  2. » Khoa Học Tự Nhiên

Đề thi vào lớp 10 chuyên Toán Nguyễn Tất Thành, tỉnh Yên Bái năm học 2013 - 2014 ppt

2 3,7K 46

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 21,36 KB

Nội dung

Đề thi vào lớp 10 chuyên Toán Nguyễn Tất Thành, tỉnh Yên Bái năm học 2013 - 2014. Câu 1. (1,5 điểm) Cho biểu thức P = ( ) ( ) a 1 a b 3 a 3a 1 : a ab b a a b b a b a ab b + −   − +  ÷  ÷ + + − − + +   a) Tìm điều kiện của a,b để P có nghĩa rồi rút gọn P. b) Tìm các giá trị nguyên của a để Q=P(3a+5) nhận giá trị nguyên. Câu 2. (3,0 điểm) 1. Giải hệ phương trình 2 2 x y xy 3y 4 2x 3y xy 3  + + − =  − + =  2. Cho phương trình x 2 – mx + 1 = 0 (1) (với m là tham số). a) Xác định các giá trị của m để hai nghiệm x 1 , x 2 (nếu có) của phương trình (1) thỏa mãn đẳng thức x 1 − 2x 2 = 1 b) Xác định các giá trị của m để phương trình (1) có hai nghiệm phân biệt đều lớn hơn −2. Câu 3. (3,5 điểm) Cho nửa đường tròn (O;R) đường kính AB, lấy M là điểm tùy ý thuộc nửa đường tròn (M không trùng với A và B). Kẻ đường cao MH của tam giác MAB. Gọi E và F lần lượt là hình chiếu của H trên MA và MB. a) Chứng minh tứ giác ABFE nội tiếp được một đường tròn. b) Kéo dài EF cắt cung MA tại P. Chứng minh MP 2 = MF.MB, từ đó suy ra tam giác MPH cân. c) Xác định vị trí của điểm M trên nửa đường tròn (O) để tứ giác MEHF có diện tích lớn nhất. Tìm diện tích của tứ giác đó theo R. Câu 4. (1,0 điểm) Tìm nghiệm nguyên của phương trình: 2x 2 + 3y 2 + 4x – 19 = 0 Câu 5. (1,0 điểm) Cho ba số dương x,y,z thỏa mãn điều kiện 1 1 2 0 x y z + − = . Tìm giá trị nhỏ nhất của biểu thức x z z y T 2x z 2y z + + = + − − . . Đề thi vào lớp 10 chuyên Toán Nguyễn Tất Thành, tỉnh Yên Bái năm học 2013 - 2014. Câu 1. (1,5 điểm) Cho biểu thức. của a,b để P có nghĩa rồi rút gọn P. b) Tìm các giá trị nguyên của a để Q=P(3a+5) nhận giá trị nguyên. Câu 2. (3,0 điểm) 1. Giải hệ phương trình 2 2 x y

Ngày đăng: 20/03/2014, 12:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w